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a b s t r a c t 

We discuss the origin of multiscaling in financial time-series and investigate how to best 

quantify it. Our methodology consists in separating the different sources of measured mul- 

tifractality by analyzing the multi/uni-scaling behavior of synthetic time-series with known 

properties. We use the results from the synthetic time-series to interpret the measure of mul- 

tifractality of real log-returns time-series. The main finding is that the aggregation horizon of 

the returns can introduce a strong bias effect on the measure of multifractality. This effect can 

become especially important when returns distributions have power law tails with exponents 

in the range (2, 5). We discuss the right aggregation horizon to mitigate this bias. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction 

The multifractal behavior of the financial time-series has 

become one of the acknowledged stylized facts in the litera- 

ture (see: [1–5] ). Many works have been dedicated to its em- 

pirical characterization [6–16] , reporting strong evidence of 

its presence in financial markets, and models have been pro- 

posed [17–24] . 

Understanding which is the origin of the measured 

multifractality in financial markets is still an open research 

challenge. This question has been raised in [25,26] where 

the authors pointed out that the power law tails and the 

autocorrelation of the analyzed time-series must be the two 

sources of the measured multifractality. In the first case, the 

multifractal behavior is a consequence of the broadness of 

the unconditional distribution of the returns; while in the 

second case, the multifractal behavior is associated with the 

causal structure of the time-series. It was also reported in 

[27] that a spurious multifractality may arise in processes 

with a long range autocorrelated volatility. After [25] , many 
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papers have investigated the relative contribution of these 

two sources to the measured multifractality [28–32] , how- 

ever no agreement exists. For example in [28] the author 

points out that the autocorrelation structure has a minor 

impact on the measured multifractality while the power law 

tails are the major source of it. In [29] they also report that 

the power law tails give the major contribution, but they also 

point out that the presence of unknown autocorrelations 

might introduce a negative bias effect in the quantification 

of multifractality. Conversely, in [30] the authors find that 

the autocorrelation gives the major contribution while 

for a specific time-series the “extreme events are actually 

inimical to the multifractal scaling”. This lack of agreement 

motivated our work, leading us to investigate what the 

source of the measured multifractality is and how it can be 

detected. 

In this paper we quantify the two contributions by using 

synthetic times-series where the two contributions can 

be separated. Specifically we analyze Brownian Motion 

with innovations drawn from a t -Student distribution, 

Multifractal Random Walk and normalized version of the 

Multifractal Random Walk. The measured multifractality on 

these synthetic series are compared with measures on both 

real financial log-returns and on a normalized version of the 
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real log-returns where the heavy tails are removed. Results 

show that the aggregation horizon has a strong effect on 

the quantification of multifractality. We verify however that 

there are regions of the aggregation horizon that can be used 

in practice to extract reliable multifractality estimators. 

The rest of the paper is organized as follows: in Section 2 

we perform a brief literature review introducing the tools we 

used for our analysis and discussing the results from previ- 

ous works. In Section 3 we review the theoretical models we 

used and we define the multifractality estimators that shall 

be used throughout the paper. Sections 4 and 5 are dedicated 

respectively to the analysis of artificial and real financial data. 

In Section 6 we discuss the results and in Section 7 we con- 

clude. 

2. Background 

2.1. Multifractality 

Among the methods which are used for the empirical 

measurement of the scaling exponents, in this work we use 

the Generalized Hurst Exponent method (GHE), see [4,33,35] 1 

which relies on the measurement of the direct scaling of the 

q th-order moments of the distribution of the increments and 

it has been shown to be one of the most reliable estimators 

[34] . Let us call X ( t ) a process with stationary increments. The 

GHE method considers the following function of the incre- 

ments 

E[ | X (t + τ ) − X (t) | q ] = K(q ) τ qH(q ) , (1) 

where τ is the time horizon over which the increments 

are computed and H ( q ) is the Generalized Hurst Exponent. 

The function ζ (q ) = qH(q ) is concave and K ( q ) depends 

also on q . In particular, GHE considers the logarithm of 

Eq. (1) 

ln ( E[ | X (t + τ ) − X (t) | q ] ) = ζ (q ) ln (τ ) + ln ( K(q ) ) , (2) 

and, if linearity with respect to ln ( τ ) holds, it computes the 

slopes of the straight lines at different q . The slopes are com- 

puted in the following way: for every q , several linear fits 

are computed taking τ ∈ [ τmin , τmax ], with usually τmin = 1 

and several values of τmax typically between [5, 19]; the out- 

put estimator for ζ ( q ) is the average of these values for a 

given q . This method gives also the errors which are the stan- 

dard deviations of these values. However, in this paper we 

do not perform any average over different values of τmin , 

τmax and we instead consider just one linear fit for a given 

range τ ∈ [ τmin , τmax ]. In particular we focus our attention 

on two ranges, namely τ ∈ [1, 19], following the prescrip- 

tion of other works ( [33,35,36] ), and τ ∈ [30, 250]. The rea- 

son for this simplification is that, given a range of τ , we did 

not want to weight more the small values with respect to 

the big values. This point will be further stressed later in the 

paper. 

2.2. Source of multiscaling in financial data: state of the art 

As already mentioned in Section 1, there is a debate in lit- 

erature concerning what property of the financial time-series 

1 The code can be found at http://www.mathworks.com/matlabcentral/ 

fileexchange/30076-generalized-hurst-exponent . 

contributes mostly to their observed multiscaling behavior. 

Let us here discuss some findings present in the literature. 

In [28] the author studied the Dow Jones Industrial Average 

taken on a daily basis and processed the data in four differ- 

ent ways in order to uncover the source of the multiscaling 

behavior. The methods used were ( [28] ): 

1. shuffling the data in order to check the impact of the 

shape of the unconditional distribution; 

2. building up surrogate data with the same unconditional 

distribution and linear correlation of the empirical one 

but with any non linear correlation removed; 

3. cutting the tails by substituting the more extreme events 

with resampled ones from the core of the distribution; 

4. generating surrogate power law-tailed time-series, 

namely double Weibull and t -Student, preserving the 

temporal structure of the empirical time-series. 

The author found that, on one hand the temporal struc- 

ture, both linear and non linear, has a minor impact. On the 

other hand, the fatter the tails are, the stronger the multi- 

scaling. And this result was confirmed both by cutting the 

extreme events and changing the unconditional distribution. 

In [30] the authors studied again the Dow Jones Industrial 

Average taken on a daily basis plus the Dow Jones Euro Stoxx 

50 sampled at one minute. In this case three analyses were 

performed: 

1. shuffling the whole dataset; 

2. dividing the dataset into intervals and shuffling them in 

order to keep short memory contributions then repeating 

the analysis changing the length of the intervals; 

3. cutting the extreme events. 

The authors found that when shuffled, the dataset loses 

its multiscaling behavior [30] . The shuffling of the intervals 

showed that the linearity of the scaling of the fluctuation 

functions worsen when the length of the interval is small 

and improves increasing it, thus according to the authors this 

should be regarded as a sign that .temporal correlations are 

the source of multiscaling. For what concerns the cut of the 

most extreme events they found that for the Dow Jones In- 

dustrial Average extreme events have no particular impact, 

while for the Dow Jones Euro Stoxx 50 they cause a distor- 

tion in the Singularity Spectrum [30] . 

Finally in [29] an extensive analysis was conducted 

on several empirical time-series including stock market 

indexes, exchange rates and interest rates. In order to un- 

veil the source of the empirical multiscaling, the shuffling 

method was used plus a comparison with synthetic data. The 

authors also found an increase of the measured multiscaling 

of the shuffled time-series which then led them to draw 

two conclusions: first that the major source of the multifrac- 

tality comes from the power law tails of the distribution; 

second that the presence of time correlations decreases 

the multifractality. These conclusions are consistent with 

the analysis of the Markov Switching Multifractal Model 

[19] . Further analyses have been conducted by means of 

fractional Brownian motions, random walks with steps 

drawn from a Levy distribution and ARFIMA processes, 

all confirming the results found on the empirical datasets 

( [29] ). 
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