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a b s t r a c t 

We consider an extended constant elasticity of variance (CEV) model in which the elastic- 

ity follows a stochastic process driven by a fast mean-reverting Ornstein–Uhlenbeck process. 

Then, we use the proposed model to examine a turbo warrant option, which is a type of ex- 

otic option. Based on an asymptotic analysis, we derive the partial differential equation of the 

leading and the corrected terms, which we use to determine the analytic formula for the turbo 

warrant call option. The parameter analysis using the extended CEV model provides us with 

a better understanding of the price structure of a turbo warrant call. Moreover, by comparing 

the turbo warrant call with a European vanilla call, we can examine the sensitivity of options 

with respect to the model parameters. 

© 2015 Elsevier Ltd. All rights reserved. 

1. Introduction 

Turbo warrants first emerged in Germany in late 2001, 

and experienced enormous growth in Northern Europe and 

Hong Kong. Turbo warrants are barrier options of the Down- 

and-Out type in which the rebate is measured by another ex- 

otic option. They are similar to a vanilla contract, but with 

two additional features: the contract has a low vega, signify- 

ing that the option price is less sensitive to changes in the im- 

plied volatility of the stock market; and the option is highly 

geared owing to the possibility of knockout. Eriksson [6] was 

the first to derive the pricing formula for a turbo warrant, 

based on the geometric Brownian motion (GBM) of the un- 

derlying asset. 

It is well known that the assumption of GBM in the Black–

Scholes (BS) model [1] in security markets is not well sup- 

ported by empirical evidence. There are two major draw- 

backs to this assumption. The first shortcoming lies in the 

flat implied volatility, whereas, in reality, the volatility fluctu- 

ates depending upon the underlying asset price and time. The 
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second weakness is the underestimation of extreme moves, 

generating a tail risk, which can be hedged with out-of-the- 

money options. Thus, many alternative underlying models 

have been proposed in order to overcome these problems 

and to extend the GBM. 

One such alternative model is the local volatility model, in 

which the volatility depends upon the underlying asset itself. 

The most well-known local volatility model is the constant 

elasticity of variance (CEV) model, in which the volatility is 

expressed in terms of the power of the underlying asset. This 

model was first proposed by Cox [3] and Cox and Ross [4] . 

However, the CEV model is restricted in terms of delta and 

vega hedging, as described by Hagan et al. [10] , who call it 

the stochastic alpha beta rho (SABR) model. The SABR model 

without the drift terms applies only to the calibration of short 

maturity options and is difficult to apply to option pricing. In 

addition, changes in the volatility and the underlying risky 

asset price are perfectly correlated in the CEV model, either 

positively or negatively. However, this correlation is not sup- 

ported by empirical evidence. Therefore, a different alterna- 

tive model is needed. 

In the original CEV model, the volatility is given by σ S θ−1 
t , 

where S t is the underlying asset price, σ is a volatility scale 
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parameter, and θ is the constant elasticity. However, Kim 

et al. [11] demonstrated that the elasticity parameter θ fluc- 

tuates fast around a mean level with a small amplitude (see 

Figure 1.1 of Kim et al. [11] ). The model derived from this 

observation is called the “stochastic elasticity of variance”

(SEV) model. Based upon this concept of stochastic elasticity 

of variance, Kim et al. [12] have derived an European option 

price formula for an asset price model which is composed 

of a multiscale version of the elasticity of CEV and the fast- 

mean reverting process and have demonstrated that the SEV 

model improves the markets volatility forecast driven by the 

CEV model. Yoon and Kim [21] studied a closed-form solution 

of perpetual American option prices using the SEV model. Us- 

ing several parameters, they analyzed the changes in option 

prices and free-boundary values. Then, Yoon et al. [22] inves- 

tigated perpetual American option prices and optimal exer- 

cise prices using a generalized constant elasticity of variance 

model, and examined the behavior of these prices with re- 

spect to the model parameters. Based on the SEV model, Yang 

et al. [19] derived the partial differential equations (PDEs) for 

the leading order and correction order terms in order to solve 

the portfolio optimization problem. Then, they investigated 

the effect of the SEV on the portfolio selection. Yoon [20] 

obtained pricing formulae for perpetual American options 

based on a multi-scale SEV. Here, the elasticity is driven by 

a fast mean-reverting process and a slowly varying diffusion 

process. Then, they observed how the parameters included 

in the stochastic elasticity influenced the option prices and 

the optimal boundary prices. In addition, Yoon et al. [23] an- 

alyzed the impact of stochastic interest rates on the pricing 

of European vanilla options under the SEV model. 

In this study, we focus on the pricing of turbo warrants 

under the SEV model, and propose a model that differs from 

those used recently to study security prices. The pricing of 

turbo warrants has been studied by Wong and Chan [17] 

under the CEV model and a stochastic volatility model, by 

Wong and Lau [18] under a jump diffusion model, and by 

Eriksson [6] under the BS model. In fact, Wong and Chan 

[17] obtained analytic solutions for turbo warrants under the 

stochastic volatility model to examine the behavior and sen- 

sitivity of turbo warrants to implied volatility. Furthermore, 

Wong and Lau [18] derived analytic solutions of turbo war- 

rants based on the double exponential jump diffusion model, 

using a Laplace transform to investigate the sensitivity of the 

turbo warrant to the jump parameters. Then, Lee et al. [14] 

examined the pricing of turbo warrants within the hybrid 

setting of stochastic and local volatility provided by Choi et al. 

[2] . We attempt to apply the turbo warrant option to the SEV 

model in order to derive the PDEs in terms of each order term, 

as well as to find the analytic solutions of the order terms un- 

der the SEV model. Furthermore, we compare the pricing of 

turbo options with that of European vanilla options and ana- 

lyze the sensitivity between them against the model param- 

eters under the SEV model. 

This paper is organized as follows. Section 2 reviews the 

pricing of turbo warrant call options and constructs the PDEs 

for the price under the SEV model. In Section 3 , we use an 

asymptotic analysis to solve the PDEs under the assumption 

that the SEV is driven by a fast mean-reverting process. Then, 

we use the proposed method to derive analytic solutions for 

the leading and correction terms. In Section 4 , we observe 

the implications of the pricing formula, based on numerical 

calculations, and consider which parameters have the biggest 

impact on the SEV option price. Finally, Section 5 concludes 

the paper. 

2. Model formulation 

We define a turbo warrant contract as per Lee et al. [14] . 

If S t is the underlying asset price time t , then a turbo warrant 

call pays the option holder (S T − K) + at maturity T , assuming 

that a specified barrier H ≥ K has not been passed by S t at any 

time prior to maturity. Let us define τH as the first time that 

the asset price hits the barrier H ; that is, τH = in f { t| S t ≤ H} . 
Under τH ≤ T , the contract is void and a new contract begins, 

which is a call option with a payoff given by the difference 

between m 

T 0 
τH 

:= min τH ≤t≤τH + T 0 S t and the strike price K , with 

time to maturity T 0 . Therefore, the turbo call contract is given 

by 

TC (t, s ) = E t [ e 
−r(T −t) (S T − K) + 1 { τH >T } | S t = s ] 

+ E t [ e 
−r(τH + T 0 −t) (m 

T 0 
τH 

− K) + 1 { τH ≤T } | S t = s ] , (1) 

where E s denotes the expectation with respect to the risk- 

neural probability Q 

γ given information up to time s , that is, 

E s = E[ ·|F s ] . From now on, we will omit the subindex s when 

s = t . 

The turbo warrant call formulated by (1) is divided into 

two parts. The first part takes after a down-and-out barrier 

( DOC ) call option with a zero rebate. The second part is a 

down-and-in lookback ( DIL ) call option. Thus, the following 

equations are satisfied: 

DOC (t, s ) = E[ e −r(T −t) (S T − K) + 1 { τH >T } | S t = s ] , 

DIL (t, s, T 0 ) = E[ e −r(τH + T 0 −t) (m 

T 0 
τH 

− K) + 1 { τH ≤T } | S t = s ] . (2) 

Let us define LB (τH , S τH 
, T 0 ) = E τH 

[ e −rT 0 (m 

T 0 
τH 

− K) + ] as a 

non-standard lookback option. Then, let LC fl( t, s, m, T ) be the 

price of the floating strike lookback call on S t = s, with real- 

ized minimum m and time to maturity T . Thus, we obtain the 

result given in the following theorem. 

Theorem 2.1. When underlying process is continuous stochas- 

tic process, then, at t < τH , the turbo call warrant is expressed 

by 

TC (t, s ) = DOC (t, s ) 

+ E[ e −r(τH −t) 1 { τH ≤T } LB (τH , S τH 
, T 0 ) | S t = s ] 

= DOC (t, s ) 

+ E[ e −r(τH −t) 1 { τH ≤T } LB (τH , H, T 0 ) | S t = s ] (3) 

where 

LB (τH , S τH 
, T 0 ) = LC fl(S τH 

, min (S τH 
, K) , T 0 ) 

− LC fl(S τH 
, S τH 

, T 0 ) . (4) 

In particular, if S t = H with t = τH , then 

TC (τH , H) = E τH 
[ e −rT 0 (m 

T 0 
τH 

− K) + ] = LB (τH , H, T 0 ) . 

Proof. Refer to Wong and Chan [17] . �

Corollary 2.1. When underlying process follows the time- 

independent local volatility model (e.g. BS model and CEV 
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