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a b s t r a c t 

Over-the-counter stock markets in the world have been growing rapidly and vulnerability 

to default risks of option holders traded in the over-the-counter markets became an im- 

portant issue, in particular, since the global finance crisis and Eurozone crisis. This paper 

studies the pricing of European-type vulnerable options when the underlying asset follows 

the Heston dynamics. In this paper, we obtain a closed form analytic formula of the option 

price as a stochastic volatility extension of the classical Heston formula and find how the 

stochastic volatility effect on the Black–Scholes price as well as on the decreasing speed of 

the option price with credit risk depends on moneyness. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Over the counter (OTC) markets constitute a significant 

portion of the world financial markets and they are grow- 

ing continuously although they are less transparent and 

operate with fewer rules than do exchanges. For example, 

about 40% of United States stock trades are made on 

OTC markets (cf. http://www.reuters.com/article/2014/04/ 

06/us- dark- markets- analysis- idUSBREA3508V20140406 ). 

Unlike the transaction on exchange traded markets, the 

transaction on OTC markets does not guarantee the 

promise of payments between buyer and seller so that 

the possibility of credit default exists in it. In fact, all the 

securities and derivatives involved in the financial turmoil 

which was initialized by a 2007 breakdown in the US 

mortgage market and finally yields the global financial 

crisis were traded in OTC markets. So, the credit risk of 

financial products traded on OTC markets has become a 

more important issue in finance. 
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The holder of options traded on OTC markets is al- 

ways vulnerable to default risk of the option writer. Op- 

tions exposed to the default risk are called vulnerable op- 

tions. Johnson and Stulz [4] initiated the pricing of Eu- 

ropean type vulnerable options under the Black–Scholes 

model. While they obtained a pricing formula of an option 

which has only counterparty liability, Klein [5] studied a 

option structure under which the option price depends on 

the correlation between the option writer’s assets and the 

underlying asset. Also, the American style vulnerable op- 

tions were studied by Klein and Yang [6] . 

The studies quoted above assume that the volatility of 

underlying asset is constant until the maturity of option. 

Even though the assumption of constant volatility gives us 

many advantages such as a closed form analytic formula, 

the crucial weakness is that it can’t capture volatility smile 

or skew which is a well-known feature of the implied 

volatility surface. Refer to Rubinstein [9] and Jackwerth and 

Rubinstein [3] for details. However, relaxing the assump- 

tion of the constant volatility of the underlying price pro- 

cess and allowing the volatility to evolve stochastically in 

time, stochastic volatility models are able to capture the 

well-known features of the implied volatility surface. Yang 

et al. [11] provided an approximate formula for European 
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vulnerable options with a fast mean-reverting stochastic 

volatility model of Fouque et al. [1] . However, the Heston 

model [2] among stochastic volatility models brings wide 

popularity because it leads to an explicit integral formula 

which is easy to compute for European vanilla options. So, 

in this paper, we obtain a closed form analytic formula 

for the vulnerable options under the Heston model and so 

it is now much easier to handle risk management prob- 

lems with credit risk of options. We also investigate how 

the stochastic volatility effect on the option price depends 

upon moneyness (the relative position of the price of an 

underlying asset with respect to the strike price of an op- 

tion) as the credit risk of the option writer increases. 

The rest of paper is organized as follows. In Section 2 , 

we formulate a partial differential equation (PDE) problem 

for a European vulnerable option under the Heston model. 

In Section 3 , using the Green function and Fourier trans- 

form method, we solve the problem and obtain a closed 

form formula of the option price. Section 4 is devoted to 

investigate how the Heston volatility effect depends upon 

moneyness. Section 5 concludes. 

2. Model formulation 

We use the framework of Klein [5] for a European vul- 

nerable call option but replace the Black–Scholes model 

adopted there for a given underlying asset by the Heston 

model in this paper. 

Let S t be the value of the underlying asset at time t sat- 

isfying the stochastic differential equation (SDE) 

d S t = rS t d t + σs 

√ 

Z t S t d W 

s 
t , (1) 

dZ t = κ(θ − Z t ) dt + σz 

√ 

Z t dW 

z 
t (2) 

under a martingale measure, where r is the riskless ex- 

pected return rate of the asset and Z t is a process driv- 

ing the mean-reverting volatility of the asset. Here, σ s (the 

coefficient of the volatility of the return), κ (the mean- 

reversion speed of the variance process Z t ), θ (the mean 

level of the variance process) and σ z (the coefficient of the 

volatility of the variance process) are assumed to be con- 

stants. 

Let V t denote the market value of the assets that the 

option writer posses at time t satisfying the SDE 

d V t = rV t d t + σv 

√ 

Z t V t d W 

v 
t (3) 

under the martingale measure, where σ v (the volatility of 

the assets) is a constant. The correlation structure of the 

Brownian motions involved in the model above is given 

by 

d〈 W 

s 
t , W 

z 
t 〉 = ρsz dt, 

d〈 W 

s 
t , W 

v 
t 〉 = ρs v dt, 

d〈 W 

z 
t , W 

v 
t 〉 = ρzv dt. 

As in Klein [5] , let payoff function of the vulnerable op- 

tion be given by 

h (S T , V T ) = (S T − K) + 
(

1 { V T ≥D ∗} + 1 { V T <D ∗} 
(1 − α) V T 

D 

)
, (4) 

where K is the strike price of the option, α is the dead- 

weight costs of the financial stress expressed as a percent- 

age of the value of the assets of the option writer, D 

∗ is 

the value of the other liabilities of the option writer, and D 

denotes a threshold value which may be larger than D 

∗ be- 

cause of the possibility that counterparty keeps operation 

even while V T is less than D 

∗. If V T is less than the constant 

default boundary D 

∗, a credit loss occurs and subsequently 

the option writer pays out only the proportion 

(1 −α) V T 
D of 

the nominal claim. 

From the Feynman–Kac formula (cf. [8] ), the option 

price P ( t, s, v, z ) defined by 

P (t, s, v , z) := E 

∗
[

e −r(T −t) (S T − K) + 
(

1 { V T ≥D ∗} 

+1 { V T <D ∗} 
(1 − α) V T 

D 

)∣∣∣∣S t =s, V t =v , Z t =z 

]

satisfies a partial differential equation (PDE) given by 

∂P 
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+ ρs v σs σv szv 
∂ 2 P 

∂ s∂ v 
+ ρzv σz σv zv 

∂ 2 P 

∂ z∂ v 
− rP = 0 

with the boundary condition P(T,s, v ,z)=(s −K) + (1 { v ≥D ∗} + 
1 { v <D ∗} (1 −α) v 

D 
)= h (s, v ) . 

3. Option price formula 

In this section, we solve the PDE (5) by using the Green 

function and Fourier transform method. For convenience, 

we first define the operator L H by 

L H := 

∂ 

∂t 
− r + r 

(
s 
∂ 

∂s 
+ v 

∂ 
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)

+ 
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+ κ(θ−z) 

∂ 
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∂ z∂ s 
+ρs v σs σv s v 

∂ 2 

∂ v ∂ s 
+ρv z σv σz v 
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)
. 

Then the PDE problem for the option price P ( t, s, z, v ) is 

expressed by 

L H P (t, s, v , z) = 0 , t < T , P (T , s, v , z) = h (s, v ) . (6) 

To obtain a solution of the problem (6) , we use the 

change of variables, the Green function method and the 

Fourier transform method sequentially as follows. First, we 

use the following change of independent and dependent 

variables. 

τ = T − t, p = r(T − t) + log s, q = r(T − t) + log v , 
P (t, s, v , z) = P ′ (τ, p, q, z) e −rτ . 

Then the PDE problem (6) becomes a problem for P ′ ( τ , p, 

q, z ) as follows. 
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