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Abstract

This work presents chaos control of chaotic dynamical systems by using backstepping design method. This technique

is applied to achieve chaos control for each of the dynamical systems Lorenz, Chen and Lü systems. Based on Lyapu-

nov stability theory, control laws are derived. We used the same technique to enable stabilization of chaotic motion to a

steady state as well as tracking of any desired trajectory to be achieved in a systematic way. Numerical simulations are

shown to verify the results.

� 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Dynamic chaos is a very interesting nonlinear effect which has been intensively studied during the last two decades.

The effect is very common, it has been detected in a large number of dynamic systems of various physical nature. How-

ever, this effect is usually undesirable in practice, and it restricts the operating range of many electronic and mechanic

devices. Recently, controlling this kind of complex dynamical systems has attracted a great deal of attention within the

engineering society. Chaos control, in a broader sense, can be divided into two categories [1]: one is to suppress the

chaotic dynamical behavior and the other is to generated or enhance chaos in nonlinear systems (known as chaotinca-

tion or anti-control of chaos [2,3]). Nowadays, different techniques and methods have been proposed to achieve chaos

control. For instance, OGY method [4], differential geometric method [5], feedback and nonfeedback control [6–9], in-

verse optimal control [10], adaptive control [11,12] and backstepping design technique [13]. In 1963, Lorenz [14] found

the first canonical chaotic attractor, which has just been mathematically confirmed to exist [15]. In 1999, Chen [2] found

another similar but topologically not equivalent chaotic attractor, as the dual of the Lorenz system, in a sense defined

by Vanêĉek and Ĉelikovskŷ [16]: the Lorenz system satisfies the condition a12a21 > 0 while Chen system satisfies

a12a21 < 0, where a12, a21 are the corresponding elements in the constant matrix A = (aij)3·3 for the linear part of the

system. Very recently, Lü and Chen [17–19] found a new chaotic system, bearing the name of the Lü system, which

satisfies the condition a12a21 = 0, thereby bridging the gap between the Lorenz and Chen attractors [18,19].

In this work, chaos in Lorenz, Chen and Lü systems is controlled by using backstepping design method. At the same

time we used the same method to enable stabilization of chaotic motion to a steady state as well as tracking of any
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desired trajectory to be achieved in a systematic way. Computer simulation is also given for the purpose of illustration

and verification.

2. Controlling Lorenz system

The Lorenz system is described by

_x ¼ aðy � xÞ;

_y ¼ cx� xz� y;

_z ¼ xy � bz;

8>><
>>: ð1Þ

which has a chaotic attractor when a = 10, b = 8/3, c = 28. We will use backstepping method to design a controller. In

order to control Lorenz system we add a control input u1 to the third equation of system (1). Then the controlled Lor-

enz system is

_x ¼ aðy � xÞ;

_y ¼ cx� xz� y;

_z ¼ xy � bzþ u1.

8>><
>>: ð2Þ

Our objective is to find a control law u1 for stabilizing the state of the controlled system (2) at a bounded point.

Starting from the first equation, a stabilizing function a1(x) has to be designed for the virtual control y in order to

make the derivative of V 1ðxÞ ¼ x2

2
, i.e., _V 1ðxÞ ¼ �ax2 þ axy be negative definite. Assume that a1(x) = px and define an

error variable

�y ¼ y � a1ðxÞ ð3Þ

Then we obtained the ðx;�yÞ-subsystem
_x ¼ a�y � að1� pÞx;
_�y ¼ cx� xz� �y � px� ap�y þ apð1� pÞx.

(
ð4Þ

We can construct a Lyapunov function as follows:

V 2ðx;�yÞ ¼ V 1ðxÞ þ
1

2
�y2.

Calculating the time derivative of V 2ðx; �yÞ along system (4), we have

_V 2 ¼ �að1� pÞx2 � ð1þ apÞ�y2 � x�y½z� a� cþ p � apð1� pÞ�.

We can choose

z ¼ a2ðx; �yÞ ¼ aþ c� p þ apð1� pÞ.

Apparently, _V 2 is negative definite if �1
a < p < 1. Similarly, let

�z ¼ z� a2ðx; �yÞ; ð5Þ

then we get the following system in the ðx;�y;�zÞ coordinates
_x ¼ a�y � að1� pÞx;
_�y ¼ cx� xz� �y � px� ap�y þ apð1� pÞx;
_�z ¼ x�y þ px2 � b�z� b½aþ c� p þ apð1� pÞ� þ u1.

8>><
>>: ð6Þ

We can construct a Lyapunov function as follows:

V 3ðx;�y;�zÞ ¼ V 2ðx;�yÞ þ
1

2
�z2.

Calculating the time derivative of V 3ðx; �y;�zÞ along system (6), we have

_V 3 ¼ �að1� pÞx2 � ð1þ apÞ�y2 � b�z2 þ �z½px2 � bðaþ c� p þ apð1� pÞÞ þ u1�
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