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a b s t r a c t 

The stability of the completely synchronous state in neural networks with electrical cou- 

pling is analytically investigated applying both the Master Stability Function approach 

(MSF), developed by Pecora and Carroll (1998), and the Connection Graph Stability method 

(CGS) proposed by Belykh et al. (2004). The local dynamics is described by Morris–Lecar 

model for spiking neurons and by Hindmarsh–Rose model in spike, burst, irregular spike 

and irregular burst regimes. The combined application of both CGS and MSF methods pro- 

vides an efficient estimate of the synchronization thresholds, namely bounds for the cou- 

pling strength ranges in which the synchronous state is stable. In all the considered cases, 

we observe that high values of coupling strength tend to synchronize the system. Further- 

more, we observe a correlation between the single node attractor and the local stability 

properties given by MSF. The analytical results are compared with numerical simulations 

on a sample network, with excellent agreement. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

During the last decades the importance of collective 

and self-organized behavior has been recognized in many 

different areas of science. In particular, investigation of 

the effect of synchronization in systems of coupled oscil- 

lators nowadays provides a unifying framework for emer- 

gent phenomena arising in various fields such as optics, 
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chemistry, biology and ecology. Collective behaviors are 

also believed to play an important role in information pro- 

cessing in the brain, both at macroscopic and cellular lev- 

els. It is conjectured that synchronous brain activity is the 

most likely mechanism for many cognitive functions, such 

as attention and feature binding, as well as learning, de- 

velopment and memory formation. However, synchroniza- 

tion is not useful all the time because brain disorders, such 

as schizophrenia, epilepsy, Alzheimer’s and Parkinson’s dis- 

eases, have been linked to high levels of synchronization in 

the neuronal activities [1,2] . 

Recently, complex networks have become an estab- 

lished framework for the study of synchronization of dy- 

namical units, based on the interplay between complexity 
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in the overall topology and local dynamical properties of 

the coupled units [3] . The dynamics of a complex network 

can be modeled by N nodes, each of them described by a 

vector of state variables x i (t) ∈ R 

m , i = 1 , . . . , N, interacting 

pairwise through a set of links, that encode the network 

topology. The evolution of the whole network can be ex- 

pressed by a system of coupled N · m differential equa- 

tions. Such systems can exhibit many types of synchro- 

nization [4] ; in this paper we are interested in complete 

synchronization in neural networks. This is the simplest 

form of synchronization, and consists in a perfect con- 

vergence of trajectories of identical (maybe chaotic) sys- 

tems in the course of time [4] , if some kind of coupling 

between them is introduced. The dynamical network is 

said to achieve globally (locally) asymptotic synchronization 

if the synchronous state, namely the trajectory in which 

x i (t) = x ∗(t) ∀ i = 1 , . . . , N, is globally (locally) asymptoti- 

cally stable. 

Typically, in networks of continuous time oscillators, 

a central question is to find the bounds on the coupling 

strength so that the stability of synchronization is guaran- 

teed [5] . To this end, we consider two mathematical meth- 

ods to study the stability of synchronous state: the Master 

Stability Function (MSF) and the Connection Graph Stability 

(CGS). The first approach, developed by Pecora and Carroll 

[6] , is based on the calculation of the maximum Lyapunov 

exponent of the transversal modes to the synchronous 

manifold and it provides conditions for the local stability 

of the synchronous state, through linearization techniques. 

The method is widely used in the study of neural synchro- 

nization and there are several extensions that allow to in- 

vestigate group and cluster synchronization, delay-coupled 

networks [7] and also non-smooth dynamical networks [8] . 

The second one, developed by Belykh et al. [5,9] , provides 

a threshold for the coupling strength above which the syn- 

chronous state is globally stable. Its calculation is based 

on the construction of a Lyapunov function for an auxil- 

iary dynamical network of two nodes. The method pro- 

vides only a sufficient condition for the global stability, be- 

ing the threshold often an overestimation of the coupling 

strength required for the synchronization. 

The main strength of MSF and CGS methods is that they 

both allow one to separate the contribution of the network 

structure from its dynamical properties. While the MSF ap- 

proach is widely used in different fields [4] , the application 

of CGS method, despite its stronger results, is restricted to 

more specific frameworks due to its restrictive hypotheses. 

We also point out that the CGS method cannot be applied 

if an increasing in the coupling strength desynchronizes 

the system (even considering only two coupled nodes), e.g. 

in x -coupled Rössler system [6] . Moreover, in literature the 

CGS results were rarely related to the MSF ones. In this 

paper we prove that the application of CGS leads to an ef- 

ficient use of the MSF method. 

Studies of neuronal synchronization based on different 

neuronal models can be separated into two categories: 

those using threshold models of integrate-and-fire type 

(I&F) and those with conductance-based realizations, such 

as Hodgkin–Huxley type models [10] . The first category is 

the most widely used in computational neuroscience, be- 

cause the structure of the mathematical model enables an 

easy implementation; as regards the analytical treatment, 

a recent extension of the MSF formalism to non-smooth 

dynamical systems [8] can be used to study these thresh- 

old models, whereas the CGS method does not apply, 

due to the lack of regularity. On the other hand, large 

networks of conductance-based models are expensive to 

simulate, but they can be studied with both MSF and CGS 

analytical techniques. In particular, the Hodgkin–Huxley 

model [11] is biophysically meaningful but extremely 

expensive in terms of computational cost, and thus often 

reduced models are used, such as Morris–Lecar [12] and 

Hindmarsh–Rose [13] , which we consider in this paper. 

Also communication between neurons is typically of 

two types: electrical connections via gap junctions and 

excitatory/inhibitory connections via chemical synapses 

[14,15] . Electrical connection is bidirectional, while the 

communication between two neurons through chemical 

synapses is unidirectional, from a presynaptic cell to the 

postsynaptic one. Chemical synapses are the principal way 

through which neurons communicate in the brain and are 

usually related to short and long term memory, according 

to their potentiation or depression under high activity 

periods [15,16] . Nevertheless, electrical coupling through 

gap-junctions has been observed to be responsible for 

neurons communication and for their overall activity [17] . 

As an example, in [17] the activity of GABAergic neurons 

in the Ventral Tegmental Area crucially changes when 

gap-junctions are cut off, suggesting them to be arranged 

over a network of electrically connected neurons. In this 

paper we consider the electrical coupling, which permits 

several analytical treatments hardly to perform in more 

complex coupling models and also reflects an observed 

type of communication between neurons. 

Recent results focus on numerical investigation or on 

MSF approach and generally link the synchronization to 

the structural attributes of the underlying network, such 

as clustering coefficient, average network distance or con- 

nectivity distribution. These results are typically obtained 

for networks of Hindmarsh–Rose regular bursting neurons 

[1,2,18–20] , while the synchronization properties of net- 

works of neurons in the irregular bursting regime has not 

yet been investigated. Conversely, the only neuronal model 

studied via CGS method is the Hindmarsh–Rose, in the full 

range of its parameters [21] . Actually, the stability of the 

synchronous state in irregular burst regime turns out to be 

of particular interest because it reminds the firing activ- 

ity of a network of neurons detected in “in vitro” cultures, 

where events in which neurons fire at high frequency in 

a short time interval (namely bursts) are followed by spo- 

radic activity [22] . Furthermore, either the firing patterns 

in each burst or the time interval between two consecu- 

tive bursts are not regular [22] . A similar scenario can be 

found in the synchronized state of the irregular bursting 

regime, while, on the contrary, in the regular regime the 

bursts and the interspike intervals are identical. 

Our aim is to study the synchronization behavior in 

such particular regimes using both CGS and MSF meth- 

ods. Their combined application allows us to restrict the 

range of investigation needed in the MSF method, leading 

to a great saving in computational time. Moreover, in some 

particular cases, with these two methods it is possible to 
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