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a b s t r a c t 

We report on the bifurcation analysis of an extended Hindmarsh–Rose (eHR) neuronal os- 

cillator. We prove that Hopf bifurcation occurs in this system, when an appropriate cho- 

sen bifurcation parameter varies and reaches its critical value. Applying the normal form 

theory, we derive a formula to determine the direction of the Hopf bifurcation and the 

stability of bifurcating periodic flows. To observe this latter bifurcation and to illustrate 

its theoretical analysis, numerical simulations are performed. Hence, we present an ex- 

planation of the discontinuous behavior of the amplitude of the repetitive response as a 

function of system’s parameters based on the presence of the subcritical unstable oscilla- 

tions. Furthermore, the bifurcation structures of the system are studied, with special care 

on the effects of parameters associated with the slow current and the slower dynamical 

process. We find that the system presents diversity of bifurcations such as period-doubling, 

symmetry breaking, crises and reverse period-doubling, when the afore mentioned param- 

eters are varied in tiny steps. The complexity of the bifurcation structures seems useful 

to understand how neurons encode information or how they respond to external stimuli. 

Furthermore, we find that the extended Hindmarsh–Rose model also presents the multista- 

bility of oscillatory and silent regimes for precise sets of its parameters. This phenomenon 

plays a practical role in short-term memory and appears to give an evolutionary advan- 

tage for neurons since they constitute part of multifunctional microcircuits such as central 

pattern generators. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Chaos can appear in systems of autonomous or non au- 

tonomous ordinary differential equations possessing few as 

three variable and one or two nonlinearities, since the pi- 

oneering work of Lorentz [1] , Liu et al. [2] and Rössler 
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[3] . Over the years, many other chaotic systems have been 

discovered [4–8] and there have been many investiga- 

tions on their dynamical behaviors [9–14] . For example, 

the building blocks of the central nervous system, neu- 

rons, are strongly complex dynamical systems. In order to 

understand the cell’s intrinsic neurocomputational proper- 

ties, much of present neuroscience research focusses on 

voltage- and second-messenger-gated currents in individ- 

ual cells. It is commonly assumed that the knowledge of 

the currents is enough to find what the cell is doing, and 

why it is doing it. This is however in contradiction with the 
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half-century-old observations, which state that cells hav- 

ing alike currents can yet provide quite different dynamics. 

In 1948, Hodgkin [15] found that, injecting a DC-current 

of different am plitude in isolated axons, results in the ex- 

hibit of repetitive spiking with different low frequencies 

and inhibition of responses in a narrow frequency band. 

Largely ignored by the neuroscience community, these ob- 

servations were investigated a few decades later by Rinzel 

and Ermentrout [16] . They show that the observed behav- 

iors are due to different bifurcation mechanisms of ex- 

citability. But, the model studied is the one introduced 

by Hodgkin and Huxley [9] (HH) which is rather com- 

plex and time consuming in numerical simulations. The ex- 

tended Hindmarsh–Rose (eHR) neuronal oscillator is a sim- 

pler mathematical model, and it has been shown that it 

presents most of the HH’s characteristics [17] . But from a 

nonlinear dynamical systems point of view, does the eHR 

neuronal oscillator behavior bring out how neurons re- 

spond to stimulus? Does the model present the multista- 

bility mechanism? Our aim is to bring some contribution 

to the field by studying this model in detail, and by exam- 

ining these points. 

The objective of mathematical models is to find the 

genuine trade off between accuracy and simplicity. The 

most important question in computational neuroscience 

is therefore, which characteristics of the complex dynam- 

ics are necessary to observe the specific tasks carried out 

by a neuron? In 1952, a mathematical model describ- 

ing neuron activity was provided by Hodgkin and Hux- 

ley (HH) [9] . During years, different other models have 

been developed and studied [18–20] . Here we focus, on the 

Hindmarsh–Rose (HR), neuronal oscillator [17,21–23] , pro- 

posed by Hindmarsh and Rose in 1984, after the formula- 

tion of their 2-equations model [21] . Their main goal was 

to model synchronization of firing of two snail neurons in 

a simple way, without the use of the Hodgkin–Huxley (HH) 

equations [22,24] . Hence, with the aim to create a neuron 

model that exhibits triggered firing, some modifications 

were done on the 2-equations model (by adding an adap- 

tation variable, representing the slowly varying current, 

that changed the applied current to an effective applied 

one) to obtain the 3-equations model [21,24] . This model 

has been very popular in studying biological properties of 

spiking and bursting neurons. A few years later, Selverston 

et al. [17] , studied a computational and electronic model 

of stomatogastric ganglion (STG) neurons. They found dur- 

ing their analysis that, biological neurons could be mod- 

eled with only three or four degrees of freedom [17] . 

They focused themselves on the familiar 3-dimensional HR 

model, and discovered that, in spite of the fact that, this 3- 

dimensional model can produce several modes of spiking–

bursting behaviors seen in biological neurons, its param- 

eter space for chaotic activity is much more limited than 

observed in real neurons. That is why they proposed a 

modified version of this model, by adding a fourth term 

(a slower process) representing the calcium dynamics [17] . 

The system’s complexity increases and it was then able to 

reproduce the complex dynamical (spiking, bursting and 

chaotic) behavior of pyloric central pattern generator neu- 

rons of the lobster stomatogastric system [17,25] . 

Over the last decades, some detailed investigations and 

studies of bifurcations and the dynamics of models such 

as HH model, Fitzhugh–Nagumo model, Izhikevich model 

or the third order HR model, have been done [19,26–28] . 

Particular attention has been devoted to the third order 

HR model in the cited articles, from which the transitions 

between quiescent asymptotic behaviors, continuous spik- 

ing regimes and global picture of the bifurcation scenario 

with respect to two parameters, with an outline to the ef- 

fects of two further parameters have been obtained. Re- 

call that, a better adjustment of the behavior of electron- 

ics neurons, when connected to its living counterpart, is 

represented by the fourth order HR model, compared to 

the third order model [17,23] . Several details of the shape 

of spiking–bursting activity, can also be adjusted with the 

help of this extended model. Furthermore, it presents more 

complex behavior than the third order model [17,23] , and 

it can describe the calcium exchange between intracellu- 

lar warehouse and the cytoplasm, to completely produce 

the chaotic behavior of the stomatogastric ganglion neu- 

rons [17,23] . Besides, the region of parameter space where 

chaos appears is larger than that of the three dimen- 

sional equations [29] . Hence, a bifurcation analysis of such 

model is important to understand transitions between sta- 

ble bursting solutions and continuous spiking regimes, and 

the fold of cycles bifurcations cascade, rousing to transi- 

tions between quiescent asymptotic behaviors and burst- 

ing regimes, as in the third order model; our aim here is to 

bring some contribution by studying the dynamical behav- 

iors of such model, which may be helpful in understanding 

how the calcium exchange is operated in the stomatogas- 

tric ganglion neurons. Thus, the first goal of our work, is 

to consider Hopf bifurcations of such a system by applying 

the normal form theory introduced by Hassard et al. [30] . 

Afterwards, we use a combination of bifurcation theory 

and numerical integration to investigate bifurcation points, 

where stable or unstable bifurcations occur in the system. 

Even if the HR model dates from 1984, and many dynam- 

ical studies are found in the literature [26,27,31–36] , no 

theoretical analysis has been given for its extended model 

to the best of our knowledge. 

Recall that, the most used neuron model for studying 

behavior of interacting neurons to understand afore prob- 

lems, are the HH type models [9] . Its complexity needs ex- 

pensive numerical time for the resolution of the differen- 

tial equations. That is why, reduced models showing essen- 

tially equivalent dynamics such as the HR model presents 

good properties and are commonly used nowadays for this 

kind of analysis. In this manuscript, we focused on the 

latter described with the following system of differential 

equations [17,23,29,37,38] : ⎧ ⎪ ⎨ 

⎪ ⎩ 

˙ x = ay + bx 2 − cx 3 − dz + I DC , 

˙ y = e − f x 2 − y − gw, 

˙ z = μ[ −z + s (x + h )] , 

˙ w = v [ −kw + r(y + l)] . 

(1) 

Here, a, b, c, d, e, f, g, μ, s, h, v, k, r and l , are con- 

stants which express the current and conductance based 

dynamics. I DC represents the injected current. Notice that, 

this model is relevant since it reproduces the observed 
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