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a b s t r a c t

We report on self-organization of adaptive networks, where topology and dynamics evolve

in accordance to a competition between homophilic and homeostatic mechanisms, and

where links are associated to a vector of weights. Under an appropriate balance between

the intra- and inter- layer coupling strengths, we show that a multilayer structure emerges

due to the adaptive evolution, resulting in different link weights at each layer, i.e. different

components of the weights’ vector. In parallel, synchronized clusters at each layer are

formed, which may overlap or not, depending on the values of the coupling strengths.

Only when intra- and inter- layer coupling strengths are high enough, all layers reach

identical final topologies, collapsing the system into, in fact, a monolayer network. The

relationships between such steady state topologies and a set of dynamical network’s

properties are discussed.

© 2015 Elsevier Ltd. All rights reserved.

Coupled biological and chemical systems, social groups

and interacting animal species, the Internet and the World

Wide Web, the brain and the stock markets are just a

few examples of systems composed of a huge number of

highly interconnected dynamical components. The modern

approach to capture the global properties of such systems

is to model them as graphs [1–4], where nodes represent

the basic units, and links stand for the interactions be-

tween them, forming a specific connectivity pattern which
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defines the so-called network’s topology. Despite their in-

trinsic differences, a set of surprising common proper-

ties, such as a power law scaling in the network con-

nectivity and the coexistence of modules observed at the

mesoscopic scale, has been revealed in real-world network

(RWN) [5]. The spontaneous emergence of these topologi-

cal features has been recently explained as a consequence

of a self-organization process involving structure-dynamics

adaptation of two fundamental mechanisms [6,7]. The first

one corresponds to the trend of reinforcing those interac-

tions with other correlated units in the network, which is

a well established process known as homophily in the case

of social systems [8] and Hebbian learning in the field of

neuroscience [9]. The second process results instead from

the limitation of the associative capacity, which preserves
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the value of the inputs/outputs received by each unit. This

mechanism is known as homeostasis [10] in neuroscience,

while in social systems it is related to the so-called Dun-

bar’s number [11], which explains the existence of a maxi-

mum number of interactions for an individual.

Up until recently, attention was almost exclusively con-

centrated on networked systems where all components

were treated on an equivalent footing, while neglecting

all the extra information about the temporal- or context-

related properties of RWNs’ interactions. Only in the last

years, and taking advantage of an enhanced resolution in

real data sets, the interest switched to properly frame the

multilayer character of RWNs, by considering them as net-

works made of diverse relationships (layers) between their

constituents [12,13]. The analysis of multilayer networks

started with a reformulation of classical topological param-

eters, such as the shortest path length, clustering coeffi-

cient, centrality or robustness of the nodes [14–17]. From

the dynamical perspective, the multilayer formulation has

been applied both to networks whose layers coexist or al-

ternate in time [13]. In both cases, the multilayer formula-

tion allows to identify synchronization regions that arise as

a consequence of the interplay between the layers’ topolo-

gies [18–20], as well as to define new types of synchro-

nization based on the coordination between layers [21].

In this paper, we focus on how the competition be-

tween homophily and homeostasis can actually lead to

self-organization of ensembles of oscillators into a multi-

layer network structure. To this purpose, we will consider

a generic adaptive network of phase oscillators, and report

the way a multilayer structure of interactions emerges and

is maintained when the weights of the network’s connec-

tions evolve according to the dynamical properties of the

nodes and, conversely, how the evolution of the network

topology influences the dynamics of the nodes and their

ability to synchronize. Particularly, we make use of an ex-

tension of the classical Kuramoto model [22] as a paradig-

matic phase oscillator able to describe the dynamics of a

series of physical, biological, technological and social sys-

tems [23,24]. This way we are able to investigate the inter-

play between the generic dynamics of phase oscillators and

the evolution of the structure where the dynamical units

are constrained to interact.

Our starting point is, then, an ensemble of N oscil-

lators whose dynamics evolves in time. Each oscillator

i (i = 1, . . . , N) has a natural frequency ωi, and, in order

to encompass the most general case, it is described by a

phasor �φi, i.e. a vector of M components φl
i

(l = 1, . . . , M)

which actually stand for its instantaneous, time depen-

dent, phases in each of the M layers of the multilayer

network on which the oscillator interacts with the rest

of the ensemble. For the sake of simplicity, we assume

a Kuramoto-like evolution for the phase φl
i
(t) on each

layer l = 1, . . . , M. Our choice is motivated by the fact that

the interaction of Kuramoto oscillators is a paradigm of

synchronization in nonlinear science [22], and actually

represents (though in its simplicity) a rather elegant way

to encompass synchronous phenomena occurring in many

biological (such as circadian clocks), technological (elec-

trical generators), and social systems (opinion formation).

Furthermore, for each oscillator, we model layer-layer

interactions by an additional coupling term accounting for

the rigidity of the phasor, i.e. implying all-to-all interac-

tions between the different components of the vector �φi.

The resulting evolution of the phasors is given by

φ̇ l
i (t) = ωi + σ1

∑
j �=i

wl
i j(t) sin(φ l

j − φ l
i )

+ σ2

∑
j �=l

sin(φ j
i
− φ l

i ). (1)

Here, {ωi} is a set of randomly assigned natural frequen-

cies distributed uniformly in [−π,π ] (note that the natural

frequency ωi of ith oscillator is the same for all M layers

of the network), and σ 1 and σ 2 are the intra- and inter-

layer coupling strengths, respectively.

This way, the exchange of information of the dynamical

state of each layer relies on the interaction of the phases

within the same oscillator i, which is controlled by the

inter-layer coupling σ 2.

On the other hand, wl
i j
(t) is the weight of the connec-

tion between elements i and j on layer l and it is allowed

to evolve in time, e.g. layers are allowed to reorganize in-

ternally. On each layer l, for each oscillator i and at each

time t, the set of connection weights {wl
i j
} satisfies the

condition
N∑
j �=i

wl
i j = 1. (2)

In other words, we consider the case for which, in Eq. (2),

the input strength received by each unit i within each layer

is constant, as in homeostatic processes [21].

In parallel with the node dynamics given by Eq. (1),

the weights of the links are also evolving following dif-

ferential equations that reflect a competition between ho-

mophily and homeostasis [6,7]. The adaptive evolution of

the weights wl
i j

is governed by

ẇl
i j(t) = pl

i j(t) −
(∑

k �=i

pl
ik(t)

)
wl

i j(t), (3)

where the time dependent quantity pl
i j
(t) is defined as

pl
i j(t) = 1

T

∣∣∣∣
∫ t

t−T

ei(φ l
i
(t ′)−φ l

j
(t ′))dt ′

∣∣∣∣. (4)

Notice that pl
i j

denotes, at time t, the average phase cor-

relation (within layer l) between oscillators i and j over a

characteristic memory time T. It follows from Eq. (3) that

the normalization condition given by Eq. (2) holds at all

times, i.e., the sum of the weights of all incoming connec-

tions at each node within each layer is conserved.

The particular case of a monoplex (M = 1) was exten-

sively studied in Refs. [6,7], both numerically and analyti-

cally, and it was shown that a large region exists in the pa-

rameter space (σ 1, T) where, starting from random initial

conditions for the weights w1
i j

and phases φ1
i
, the network

asymptotically reaches a state organized in synchronous

clusters. Within this regime, the global phase coherence

is rather small while the local coherence (i.e. the level of

phase synchronization of each oscillator within its neigh-

borhood) is very high, showing, at the same time, a scale-

free distribution of the connection weights w1
i j

as t → ∞.
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