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a b s t r a c t

In this paper, the chaotic behavior of a simplest autonomous memristor-based circuit of

fractional order is suppressed by periodic impulses applied to one or several state vari-

ables. The circuit consists of two passive linear elements, a capacitor and an inductor, as

well as a nonlinear memristive element. It is shown that by applying a sequence of ade-

quate (identical or different) periodic impulses to one or several variables, the chaotic be-

havior can be suppressed. Impulse values and control timing are determined numerically,

based on the bifurcation diagram with impulses as bifurcation parameters. Empirically, the

probability to have a reasonably wide range of impulses to suppress chaos is quite large,

ensuring that chaos suppression can be implemented, as demonstrated by several exam-

ples presented.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The simplest autonomous memristor-based chaotic cir-

cuit (SCC) of integer order, presented by Muthuswamy and

Chua in [1], consists of only three circuit elements. As

shown in Fig. 1, there are two energy-storage passive and

linear elements (an inductor and a capacitor), and a non-

linear active memristor. In this way, the required circuit el-

ements to generate chaos reduces to three, giving “the sim-

plest possible circuit in the sense that we also have only

one locally-active element, the memristor” [1] (see [2] for

the notion of local activity).

The existence of memristor was stipulated by Chua in

1971 in his seminal paper “The missing circuit element”

[3]. From a circuit-theoretic point of view, he postulated

that there are four fundamental circuit variables, namely

the voltage v, charge q, flux linkage ϕ and current i, and six
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two-variable combinations of those elements, as shown in

Table 1 [3,4]. “From the logical as well as axiomatic points

of view, it is necessary for the sake of completeness to pos-

tulate the existence of a fourth basic two-terminal circuit

element which is characterized by a ϕ − q curve” [3], filling

the missing nonlinear relationship between charge q and

flux ϕ, M(ϕ, q) = 0 (Table 1).

The term memristor, coined by Chua, also reflects the

fact that it behaves somewhat like a nonlinear resistor

with memory.

The real existence of this device was established in

2008, when a physical prototype of a two-terminal device

behaving as memristor was announced in Nature [5], af-

ter Williams’s group in the HP Labs reported it on 30 April

2008. They proved the existence of a fourth basic element

in integrated circuits by realizing the world-first memris-

tor, characterizing the memristor as being “a contraction

of memory resistor, because that is exactly its function: to

remember its history”.

As shown by Chua, memristor can replace a circuit

of over 15 transistors and several other passive elements,
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Fig. 1. Simplest autonomous memristor-based chaotic circuit, as pre-

sented in [1].

Table 1

Six possible 2-variable relationships.

Combinations of q, v, ϕ, i Relationships

(v, i) v = Ri

(ϕ, i) ϕ = Li

(q, i) q(t) = ∫ t

−∞ i(τ )dτ

(q, v) q = Cv
(ϕ, v) ϕ = ∫ t

−∞ v(τ )dτ

(ϕ, q) memristor: M(ϕ, q) = 0

especially in small (molecular or cellular) scales. There-

fore, it is useful for a large number of potential appli-

cations, generating great interest from the scientific com-

munity. For example, behaving functionally like synapses,

memristors could be utilized in analog circuits mimicking

the functions of the human brain (see e.g. [4]). Today, there

are many research groups working on similar projects, for

example, IBMs Blue Brain project, Howard Hughes Medi-

cal Institute’s Janelia Farm, and Harvard Center for Brain

Science. There are also many other applications in var-

ious areas, such as in electric circuits [6], logic circuits

[7], concepts of computer memory [8], DRAM, flash, and

disks [9], electroforming of metals and semiconductor ox-

ides [10], memristor networks [11], bioelectricity model-

ing [12], next generation computers [13], cellular automata

[11], linearized model of the pinched i − v hysteresis [14],

to mention only a few (more references can be found in

[15]). The increasing interest in this element is strongly

justified by the fact that more than 1800 papers published

on the topic up to the middle of 2015 according to the

Web of Science. It is also remarked that the concept of

memristor was extended by Chua to the memcapacitor and

meminductor [16], which also generate a lot of excitement

to the field.

Here, consider the current-controlled (or charge-

controlled) ideal memristor [3] (Fig. 2), as presented by

the HP group, which is modeled by the following port and

state equations respectively [5] (similarly, voltage-controlled

memristor equations can be defined [17]):

M :

{
vM(t) = R(x(t))iM(t), (a)
.
x(t) = ±k f (x(t))iM(t). (b)

(1)

In this model, R(x), called the memristence [3] as de-

fined for HP’s memristor [5], is a sum of the resistances

Fig. 2. Scheme of titanium-dioxide (TiO2) memristor (adapted from [5]).

of the doped and undoped regions (Fig. 2):

R(x) = xRon + (1 − x)Rof f , x = w

D
∈ (0, 1), (2)

where x represents the internal state memristor variable,

with w being the width of the doped region, referenced to

as the total length D (≈10nm) of the (TiO2-based) semicon-

ductor film sandwiched between two metal contacts [5]1;

Ron and Roff (Ron � Roff) are the minimum and the maxi-

mum resistances respectively, to which the device can be

configured (corresponding to w = 0 and w = D respectively,

see also [6,19]). In (1b), f(x) is the so-called dopant drift

window function, which models the internal state of the

memristor, and k depends directly proportional to Ron and

inversely proportional to D, while ± represents the mem-

ristor polarity [5].

Hereafter, for notational simplicity, unless necessary the

time argument t will be dropped.

The nonlinear scalar function f defined in (1b), is nec-

essary to compensate the differences between the experi-

mental model and the theoretical model. Function f is con-

tinuous with which the solution existence and uniqueness

of the underlying state equation are ensured. Several vari-

ants of f have been proposed2, and one of the mostly used

is [6]

f (x) = 1 − (2x − 1)2p, (3)

with p being a positive integer. The behavior of this func-

tion on some subintervals can be linear or nonlinear, de-

pending on p (Fig. 3), an important parameter for calculat-

ing the fractional resistance of the ideal memristor.

In order to build the SCC, Muthuswamy and Chua

[23] used a more general vector window function (1b),

f (x, iM) = iM − αx − iMx, and a nonlinear memristance

(1a), R(x) = β(x2 − 1), with α and β being real parame-

ters. This kind of generalization of the ideal memristor (1a)

1 Nowadays, there are several techniques to realize memristors by using

different materials (see e.g. [18]).
2 A linear approximation is presented in [20], with a nonlinear form in

[21] (see also [15,22]).
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