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a b s t r a c t

This paper presents a procedure to integrate the sine-Gordon model against the back-

ground of the stripe domain structure. The nonlinear dynamics of solitons and disper-

sive waves in the helical (stripe domain) structure of a ferromagnet with the easy plane

anisotropy in the magnetic field, which is perpendicular to the spiral axis, has been inves-

tigated in detail. It has been shown that the formation and motion of solitons are accom-

panied by the local translations of the stripe structure and by the oscillations of its domain

walls, which manifest themselves as “precursors” and “tails” of the solitons. The large time

behavior of the weak-nonlinear dispersive wave field generated by an initial localized per-

turbation of the structure has been investigated. The ways of observing and exciting the

solitons in the spiral structure of magnets and multiferroics are discussed.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

This article covers the nonlinear dynamics of solitons

and dispersive waves in the quasi-one-dimensional stripe

domain structure of condensed matters. Such systems fre-

quently occur. Adatom lattices at the surface of crystals

with grooved potential relief can serve as numerous ex-

amples of the periodic incommensurable structures [1,2].

Many magnetic materials have no inversion centers; the

quasi-one dimensional helical structure is their periodic

ground state [3]. The twisting of the helicoid can be gov-

erned by varying an external magnetic field perpendicu-

lar to the magnetic spiral axis. The spiral ordering of the

vector-director also characterizes cholesteric liquid crys-

tals in external electric and magnetic fields [4]. Among

advanced applied materials with a significant magneto-

electric coupling, multiferroics with the cycloidal magnetic

structure cause special interest [5–7].
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Theoretically, the ground state of the above systems can

be described through a one-dimensional lattice of kinks

(domain-wall structure). The kink lattice itself is a strongly

nonlinear state of a magnetically ordered medium. Along

with the substantial nonlinearity of basic equations, the

inhomogeneous structure makes it difficult to analytically

describe the solitons and waves in periodic structures.

A constructive decision is possible but within simplified

models taking the basic interactions into account correctly

and, at the same time, allowing exact solutions. The most

popular and universal model for describing the nonlinear

dynamics of the magnetic stripe and crystal structures is

the nonlinear sine-Gordon equation [3,8–12]

∂2
t � − ∂2

z � + sin � = 0. (1.1)

Depending on the particular problem, the field �(z, t) de-

fines either the magnetization distribution, or the vector-

director rotation, or the adatom displacement. Here z is the

spatial coordinate, t is time.

Despite all solutions of Eq. (1.1) with a homogeneous

asymptotic behavior of the field �(z, t) as z → ±∞
have been investigated in detail by means of inverse scat-

tering problem method or by its modifications [13,14],

the nonlinear dynamics against the background of stripe
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domain structures is almost never studied. Being strongly

nonlinear, the domain structure dramatically complicates

the procedure to integrate a model. Underlying the inverse

scattering problem method, the conjugate condition for

analytical functions (the classical Riemann problem of the

theory of functions of a complex variable) should be for-

mulated not on the complex plane of the spectral param-

eter, as it was in the case of the uniform ground state of

a medium, but on the Riemann surface. The latter is asso-

ciated with the background structure and turns out to be

topologically equivalent to a torus.

We note here, that widely used finite-gap integration

is hardly effective for studying the nonlinear excitations

in the periodic structure, as it leads to complicated tran-

scendental relations and multi-dimensional theta-functions

[15]. As a rule, such integration gives complex solutions of

the initial model. To extract the manifold of real solutions

is a difficult mathematical problem. Moreover, the finite-

gap-integration is not appropriate for studying dispersive

nonlinear waves, related to the continuous spectrum of the

inverse scattering transform.

In [16,17] the soliton excitations on the background of

spiral structure have been analyzed by Darboux and Bäck-

lund methods. In [18,19] the technique of “dressing” (mod-

ification of the inverse scattering problem), which allows

to make complete analysis of solitons and waves in the

spiral structure at localized initial conditions and bound-

ary conditions at infinity, has been formulated. “Dressing”

technique gives the real solutions of the model and allows

to express the final formulae in terms of certainly studied

elliptic functions. It was shown, that the formation and the

motion of solitons are always accompanied by the macro-

scopic translations of the structure. These translations ex-

plicitly present in the boundary conditions of the problem

and determine the internal structure of the solitons. Math-

ematically, the scheme of integration for the model (1.1) is

similar to integration of the Landau–Lifshitz equation for

a quasi-one-dimensional ferromagnet with the easy axis

anisotropy against the background of the nonlinear preces-

sion wave of a large amplitude (see [20–23]).

In the present paper we give the complete analysis of

the nonlinear dynamics of solitons and dispersive waves

in the quasi-one-dimensional spiral structure of a ferro-

magnet without inversion center in the framework of sine-

Gordon model. We discuss the possibilities of observing

and exciting the solitons in the spiral structure. We inves-

tigate the behavior of dispersive wave field, generated by

localized perturbation of the spiral structure at large times.

2. The sine-Gordon model for a spiral structure

Let us describe the magnetization distribution in a fer-

romagnet helical structure by the vector field M(z, t),

where M2 = M2
0

= const; z is spatial coordinate, t is time.

The energy density for the quasi-one-dimensional ferro-

magnet without the inversion center with an easy plane

anisotropy (the xOy-plane) in the constant external mag-

netic field H = (H, 0, 0) (H > 0) is written as follows

[17–19]:

w̃ = α

2
(∂zM)

2 + κ(M1∂zM2 − M2∂zM1) + β

2
M2

3 − M1H.

(2.1)

Here α, β > 0 and κ are the constants of ex-

change interaction, magnetic anisotropy and Dzyaloshinskii

interaction, respectively. At H = 0 the Dzyaloshinskii in-

teraction (Lifshitz invariants) in energy (2.1) yields ideal

helical ordering. The vector M(z, t) lies in the xOy plane

and, upon displacement along the Oz-axis, it rotates such

that a spiral structure appears, the period l0 of which

is incommensurate with the lattice parameter a and ex-

ceeds it many times, i.e. l0�α/κ � a. The external field

H tends to arrange magnetic moments of atoms in the

xOy plane along the Ox directions. Due to the competition

of the opposite trends, extended regions of the width L0

(domains) are formed along the Oz axis. The magnetiza-

tion distribution within these regions remains nearly ho-

mogeneous. The width of the domain wall in the vicinity

of the critical field H < Hc = (κ π/4)2M0/α is l0 � α/κ �√
αM0/Hc � L0. The spiral magnetization turn is accom-

plished within the domain walls. At H > Hc all the system

has the commensurable ferromagnetic ordering.

For the real materials with a spiral structure the param-

eters of the problem satisfy inequality [17,23,24]:

H

M0

≤ κ2

α
� β.

When this restriction is valid, the Landau–Lifshitz equa-

tions for a quasi-one-dimensional ferromagnet are reduced

to the sine-Gordon model [17,23]:

∂2
t ′� − ∂2

z′� + sin � = 0. (2.2)

Here we use the dimensionless variables z′ = z
√

H/(αM0),

t′ = γ
√

βHM0t . Below, strokes “′” will be omitted. In the

first approximation the magnetization distribution is

M ≈ M0(cos �, sin �, 0).

In dimensionless variables the energy density w =
w̃/(M0H) of a quasi-one-dimensional ferromagnet takes

the form:

w = 1

2
[(∂z�)2 + (∂t�)2] + q∂z� + (1 − cos �), (2.3)

where q = κ
√

M0/(αH).

Depending on the value of q, the minimum of energy

(2.3) corresponds either homogeneous distribution of the

order parameter � = 0 (mod 2π ), or the periodic struc-

ture:

� = ϕ0(χ ) = π − 2am(χ, k), χ ≡ z/k;
cos

ϕ0

2
= sn(χ, k), sin

ϕ0

2
= cn(χ, k),

∂χϕ0

2
= −dn(χ, k), (2.4)

where sn(χ , k) and etc. are the Jacobi elliptic functions

with modulus k (k2 ≤ 1) [25–27].

An average energy on the one period of spiral structure

is

W̄ = 1

L0

∫ L0

0

dz w(z) = −π q

K k
− 2

(
k′
k

)2

+ 4 E

K k2
.

Here E = E(k) is complete elliptic integral of the second

kind. Minimization of energy W̄ as a function of k gives

the equation:

πqk − 4E = 0. (2.5)
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