
Effect of bounded noise on chaotic motions of stochastically
perturbed slowly varying oscillator

Zhen Chen, X.B. Liu ⇑
State Key Lab of Mechanics and Control for Mechanical Structures, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 29
Yudao Street, Nanjing 210016, PR China

a r t i c l e i n f o

Article history:
Received 15 October 2014
Accepted 25 February 2015

a b s t r a c t

The effect of bounded noise on the chaotic behavior of a class of slowly varying oscillators
is investigated. The stochastic Melnikov method is employed and then the criteria in both
mean and mean-square sense are derived. The threshold amplitude of bounded noise given
by stochastic Melnikov process is in good comparison with one determined by the numeri-
cal simulation of top Lyapunov exponents. The presence of noise scatters the chaotic
domain in parameter space and the larger noise intensity results in a sparser and more
irregular region. Both the simple cell mapping method and the generalized cell mapping
method are applied to demonstrate the effects of noises on the attractors. Results show
that the attractors are diffused and smeared by bounded noise and if the noise intensity
increases, the diffusion is exacerbated.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The research on chaotic phenomena in nonlinear
dynamical systems has been engaging the attention and
interest of researchers for many decades, since Lorenz [1]
proposed a remarkable system representing a flow in
three-dimensional space. However, it is particularly known
that noise is inevitably present in the real world when one
considers the dynamics of a system. In recent years, the
effects of noise on nonlinear systems exhibiting chaotic
behaviors have aroused considerable attention. Bulsara
et al. [2] took into account the effects of weak additive
noise on chaotic attractors of the rf SQUID. The effect of
noise on the evolution of cooperation was mentioned in
the studies of Wang et al. [3,4]. Frey and Simiu [5,6] devel-
oped the method of Melnikov, which is a technique provid-
ing necessary conditions for the occurrence of chaos in
deterministic systems, to a class of single degree of

freedom system with stochastic excitation. The general-
ized stochastic Melnikov method was employed to derive
a mean–square criterion of a periodically forced Duffing
system with additive Gaussian white noise by Lin and
Yim [7], which leads to a conclusion that the presence of
noise lowered the threshold and enlarged the possible
chaotic domain in parameter space. The effects of external
or parametric bounded noise on the chaotic behavior of the
Duffing oscillator have been analyzed by Xu et al. [8] and
Zhu et al. [9]. As an extension to high-dimensional case, a
quasi-integrable Hamiltonian system with two degree-of-
freedom was employed and the stochastic Melnikov pro-
cess was derived when the harmonic and the bounded
noise excitations were imposed on the system [10].
Moreover, some transient dynamics, such as mean first
passage time through a potential barrier and mean growth
rate coefficient as a function of the noise intensity, were
studied in [11,12]. Nevertheless, the noise effect on
three-dimensional systems draws paltry attention.
Wiggins and Holmes [13] and Wiggins and Shaw [14]
obtained necessary conditions for the occurrence of chaos
in a class of slowly varying oscillators in which
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perturbations were periodic. Then Simiu [15] generalized
these authors’ theories for the case of quasiperiodic or
stochastic perturbations. Besides acquiring necessary con-
ditions for chaos induced by stochastic perturbations, he
also estimated the lower bounds for the mean time of exit
from preferred regions of phase space.

The main purpose of this paper is to investigate a speci-
fic stochastically perturbed slowly varying oscillator
characterized by three-dimensional system adopting the
generalized Melnikov technique and to show the effect of
noise on chaotic behaviors and the attractors of the system.

An outline of this paper is as follows. In Section 2, ini-
tially we briefly introduce the system and the bounded
noise. Subsequently we bring Sections 2.1 and 2.2 into a
discussion of the geometry of the phase space of the unper-
turbed and perturbed system, describing the basic per-
turbation results. Standard linear analysis of fixed points
is carried on in Section 3 and a derivation of the stochastic
Melnikov process is demonstrated in Section 4. To verify
the results of our analytical approach, simulations of the
governing equations are performed in Section 5, in which
various numerical methods are applied. Ultimately conclu-
sions are given in Section 6.

2. Formulation

We consider a class of third order nonautonomous sys-
tems to model vibration of a feedback controlled buckled
column subjected to additive noise. Its deterministic case
was first proposed by Homes and Moon [16] and then
examined by Wiggins [17]. The system is given by

_x1 ¼ x2

_x2 ¼ x1 � x3
1 � I þ eð�dx2 þ nðtÞÞ

_I ¼ eðcx1 � aIÞ
_h ¼ X

ð1Þ

where a; c; d are parameters, X is positive and e is small
and fixed. nðtÞ is a bounded noise which is a harmonic
function with constant amplitude and random frequency
and phases, whose mathematical expression is

nðtÞ ¼ lcosðhþ wÞ
w ¼ rBðtÞ þ C

ð2Þ

where l; r are positive constants, BðtÞ is a unit Wiener
process, C is a random variable uniformly distributed in
½0;2pÞ. nðtÞ is a stationary random process in wide sense
with zero mean. Its covariance function and spectral den-
sity are respectively

CnðsÞ ¼
l2

2
exp �r2s

2

� �
cosXs

SnðxÞ ¼
ðlrÞ2

2p
1

4ðx�XÞ2 þ r4
þ 1

4ðxþXÞ2 þ r4

 ! ð3Þ

The variance of the noise is Cð0Þ ¼ l2=2 which implies
that the noise has finite power. It is a narrow-band process
when r is small and approaches to white noise as r!1.

It can be shown that the sample functions of the noise are
continuous and bounded which are required in the deriva-
tion of the Melnikov function [5].

2.1. The unperturbed system

The unperturbed system is given by

_x1 ¼ x2

_x2 ¼ x1 � x3
1 � I

_I ¼ 0
_h ¼ X

ð4Þ

and the ðx1; x2Þ component of (4) has the form of a 1-
parameter family of Hamiltonian systems with its
Hamiltonian function given by

Hðx1; x2; IÞ ¼ x2
2

2
� x2

1

2
þ x4

1

4
þ Ix1 ð5Þ

Fixed points of ðx1; x2; IÞ component of (4) are given by
ðx1ðIÞ;0; IÞ, where x1ðIÞ is a solution to the equation of

x3
1 � x1 þ I ¼ 0 ð6Þ

For I 2 �2=3
ffiffiffi
3
p

;2=3
ffiffiffi
3
p� �

, Eq. (6) has three solutions

with the intermediate one corresponding to a hyperbolic
fixed point. For I > 2=3

ffiffiffi
3
p

and I < �2=3
ffiffiffi
3
p

, there exists
only one solution of Eq. (6) corresponding to an elliptic
fixed point and for I ¼ �2=3

ffiffiffi
3
p

, Eq. (6) has two solutions
corresponding to an elliptic fixed point and a saddle-node
fixed point. Since we will only be interested in hyperbolic

fixed points, we denote the interval �2=3
ffiffiffi
3
p

; 2=3
ffiffiffi
3
p� �

as J.
The hyperbolic fixed points of the ðx1; x2; IÞ component

of (4) form one-manifold denoted by

cðIÞ ¼ ð�x1ðIÞ ; 0 ; IÞ ð7Þ

where �x1ðIÞ is the intermediate root of Eq. (6) when I 2 J.
For each fixed I, i.e. for each fixed point there exists a pair
of homoclinic orbits satisfying

x2
2

2
� x2

1

2
þ x4

1

4
þ Ix1 ¼ �

1
2

�x2
1ðIÞ þ

1
4

�x4
1ðIÞ þ I�x1 ð8Þ

Thus, the phase space of (4) is shown in Fig. 1.
Therefore in the full context of ðx1; x2; I; hÞ phase space

the unperturbed system (4) has a two-dimensional nor-
mally hyperbolic invariant manifold with boundary

Fig. 1. Phase space of the unperturbed system (4).
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