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a b s t r a c t

We introduce a map to describe the systematics of orbit creation and annihilation in
Lorenz-like dynamical systems. This map, y0 ¼ b�

ffiffiffiffiffiffi
jyj

p
, has a singular maximum and is

useful for describing flows that undergo a tear-and-squeeze route to chaos. We call this
map the Lorenz map. We find: much of the dynamics is determined by the bifurcations
of the period-one and period-two orbits; orbits are created in explosions (singular sad-
dle-node bifurcations) based on two symbols s0; s1, and later removed in inverse processes
that are implosions. The order in which direct and inverse explosions occur generally fol-
lows the inverse order shown by the logistic map. In the entire parameter range only one
regular saddle-node bifurcation and one period-doubling bifurcation occurs.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The logistic map adequately describes dissipative flows
that generate chaotic behavior by a stretch-and-fold
mechanism. One such flow is defined by the Rössler equa-
tions [1]. For such flows the return map on a Poincaré sec-
tion typically exhibits a parabolic shape in the limit of large
dissipation. This shape comes about for the following rea-
son. Initial conditions near an unstable focus are first accel-
erated away from the fixed point, but then must decelerate
before being returned to the neighborhood of the unstable
fixed point. The deceleration is responsible for the para-
bolic shape of the return map.

Other flows, such as that associated with the Lorenz
equations [2], generate chaos by a different mechanism.
This is the tear-and-squeeze mechanism [3,4]. Return
maps for such flows do not exhibit a quadratic extremum:
rather their extrema are singular. One such return map
appears in [2], Fig. 4. This shape comes about because
points in the neighborhood of an unstable focus are accel-
erated away from that focus even as they fall into a domain
largely influenced by a different focus. This continued
acceleration is responsible for the non differentiable nature
of the return map. Flows that exhibit this type of return
map occur in fluids [5,6] and in lasers [7]. In particular,

natural systems whose underlying dynamics has a twofold
symmetry and exhibits chaotic behavior typically exhibit
this phenomenon.

A great deal of information about orbit creation and
annihilation in the Rössler and similar systems can be
determined by detailed study of the logistic map.

In order to understand the systematics of orbit creation
and annihilation in flows exhibiting a tear-and-squeeze
mechanism, it is useful to study first return maps with sin-
gular maxima. A family of such maps can be introduced
that have a structure similar to that of one common ver-
sion of the logistic map:
logistic map x0 ¼ f ðx; aÞ ¼ a� ðjxjÞ2

Lorenz map y0 ¼ gðy; bÞ ¼ b� ðjyjÞ1=2
ð1Þ

The Lorenz map has two leaves, or branches, separated by a
singular point at y ¼ 0. We label the branch on the left with
positive slope 0 and that on the right with negative slope 1.
The form of the separating maximum (x2 or

ffiffiffiffiffiffi
jyj

p
) has no

impact on either the representation of a trajectory by sym-
bols [8] or the kneading invariant [9] of a trajectory or per-
iodic orbit. These invariants are computed for the Lorenz
map as for the logistic map.

The logistic map is concave down. That means that a
straight line connecting any two points on this map lies
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entirely below the map. By contrast, each of the two mono-
tonic branches of the Lorenz map is concave up. This topo-
logical difference introduces some pronounced differences
between the two maps. The similarities resulting from the
monotonicity of the branches as well as the applicability of
the kneading theory, and the differences resulting from
topological effects (concavity up or down) will be
described in this work.

The organization of this paper is as follows. The bifurca-
tion diagram for the Lorenz map is described in Section 2.
The bifurcation diagram is largely constrained by bifurca-
tions involving the period-one and period-two orbits.
These are described in Sections 3 and 4. The boundaries
of the attractor and the basin of attraction are described
in Section 5. The first explosion occurs at b ¼ 0 and creates
two unstable period-one orbits. It simultaneously creates
all trajectories that can be constructed by arbitrary
combinations of the two symbols s0 ¼ 0 and s1 ¼ 1. This
explosion, which serves as the prototype for all other
explosions and implosions exhibited by this map, is
described in Section 6. The saddle-node bifurcations that
occur in the logistic map are replaced by ‘‘singular sad-
dle-node bifurcations’’ in the Lorenz map. Unstable peri-
odic orbits are created in the explosion that occurs at
b ¼ 0 and removed in a series of implosions as b increases,
with the last implosion occurring at b ¼ 1. An implosion as
b increases through a critical value bcr appears as an explo-
sion as b decreases through bcr . In Section 7 we describe
why caustics are not visible in the bifurcation diagram of
the Lorenz map while they dominate the bifurcation dia-
gram of the logistic map. The zero crossings of the
anticaustics of the Lorenz map provide a useful tool for
locating explosions involving primary orbits of various per-
iods and also for determining the order in which the explo-
sions take place. This order is described in Section 8. The
analog of the period three window of the logistic map,
involving an inverse singular saddle-node bifurcation, is
described in Section 9. Other implosions are described in
Section 10. The final implosion, involving two period-two
orbits, is described in Section 11. On the path to the final
explosion there is a series of implosions and explosions
among orbits of high even period ðp P 14Þ. These occur
in matched pairs and serve to leave the spectrum of tra-
jectories present at the beginning of this interval ðbbÞ iden-
tical to the spectrum at the end ðbcÞ. These processes are
discussed in Section 12. The Lorenz map is one in a larger

class ðy0 ¼ b� jyjk; 0 < k < 1Þ of mappings with singular
critical points. The properties of these maps are deter-
mined by the same set of critical values of the control
parameter as is the Lorenz map. These critical parameters
are described in Section 13. The systematic decrease in
the topological entropy as b increases for this entire class
of maps is displayed in Section 14. We summarize our
results in Section 15.

2. Bifurcation Diagram

A great deal of information about the properties of the
logistic map x0 ¼ a� x2 can be determined from its bifurca-
tion diagram. This shows that a stable period-one orbit is

created at x ¼ �1=2 when a ¼ �1=4. This orbit remains
stable for a increasing until a period-doubling bifurcation
occurs at ðx; aÞ ¼ ð1=2;3=4Þ. The initial period-doubling
bifurcation is followed by a series of period-doubling bifur-
cations that accumulate at a1 ¼ 1:401155 . . .. Beyond the
accumulation point there is a series of noisy period-halving
bifurcations [10] that end at ab ¼ 1:543689 . . .. For a > a1
there is a mixture of periodic windows and chaotic behav-
ior that exists until a crisis occurs at a ¼ 2. In the range
a1 < a < ab all periodic orbits have even period. For a > 2
almost all initial conditions escape to a stable fixed point
at x = �‘‘1’’. Only unstable periodic orbits are present in
the neighborhood formerly occupied by the chaotic
attractor.

By contrast, the bifurcation diagram of the Lorenz map
y0 ¼ b�

ffiffiffiffiffiffi
jyj

p
conveys very little information. Fig. 1 shows

that there is a chaotic attractor in the range 1
4 < b < 3

4 and
outside this range there is a stable period-one orbit.
These two bounds are the b values at which the only two
normal bifurcations exhibited by this map occur: an
inverse saddle node bifurcation that occurs at bsnb ¼ 1

4 that
destroys a stable period-one orbit; and a regular pitchfork
or period-doubling bifurcation that occurs at bpdb ¼ 3

4 and
transforms an unstable period-one orbit into a stable per-
iod-one orbit. There are infinitely many periodic orbits in
the attractor. The bifurcation diagram does not show that
there are very many (countable infinity of) unstable peri-
odic orbits in the intervals 0 < b < bsnb and bpdb < b < 1.
The number of periodic orbits decreases in a systematic
way as b increases from bsnb to bpdb. However, as all bifur-
cations involve unstable orbits, none appear in the bifurca-
tion diagram. There is a global repellor at y ¼ �‘‘1’’ for all
values of b.

Fig. 1. Bifurcation diagram for the Lorenz map shows globally attracting
period one orbits for b < bsnb ¼ 1

4 and 3
4 ¼ bpdb < b. Between these values

there is a chaotic attractor exhibiting no stable periodic windows but
containing many unstable periodic orbits. The attractor boundaries in this
region are yþðbÞ ¼ b and y�ðbÞ ¼ b�

ffiffiffi
b
p

. In the range
bb ’ 0:59 . . . < b < bpdb all periodic orbits in the attractor have even
period except for an unstable period-one orbit. In the ranges 0 < b < bsnb

and bpdb < b < 1 there are many unstable periodic orbits.
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