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In this paper, we propose a novel methodology for automatically finding new chaotic
attractors through a computational intelligence technique known as multi-gene genetic
programming (MGGP). We apply this technique to the case of the Lorenz attractor and
evolve several new chaotic attractors based on the basic Lorenz template. The MGGP algo-
rithm automatically finds new nonlinear expressions for the different state variables start-
ing from the original Lorenz system. The Lyapunov exponents of each of the attractors are
calculated numerically based on the time series of the state variables using time delay
embedding techniques. The MGGP algorithm tries to search the functional space of the
attractors by aiming to maximise the largest Lyapunov exponent (LLE) of the evolved
attractors. To demonstrate the potential of the proposed methodology, we report over
one hundred new chaotic attractor structures along with their parameters, which are
evolved from just the Lorenz system alone.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An important research theme in non-linear dynamics is
to identify sets of differential equations along with their
parameters which give rise to chaos. Starting from the
advent of Lorenz attractors in three dimensional nonlinear
differential equations [1,2], its several other family of
attractors have been developed like Rossler, Rucklidge,
Chen, Lu, Liu, Sprott, Genesio-Tesi, Shimizu-Morioka etc.
[3]. Extension of the basic attractors to four or even higher
dimensional systems has resulted in a similar family of
hyper-chaotic systems [4]. In addition, several other struc-
tures like multi-scroll [5] and multi-wing [6] versions of
the Lorenz family of attractors have also been developed
by increasing the number of equilibrium points.
Development of new chaotic attractors has huge applica-
tion especially in data encryption, secure communication
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[7] etc. and in understanding the dynamics of many real
world systems whose governing equations match with
the template of these chaotic systems [8]. There has been
several research reports on the application of master-slave
chaos synchronization in secure communication [9], where
the fresh set of chaotic attractors can play a big role due to
their rich phase space dynamics. Here we explore the
potential of automatic generation of chaotic attractors
which is developed from the basic three dimensional struc-
ture of the Lorenz system.

We use the Lyapunov exponent - the most popular sig-
nature of chaos, to judge whether a computer generated
arbitrary nonlinear structure of third order differential
equation along with some chosen parameters exhibits
chaotic motion in the phase space. Since there could be
chaotic behaviour or complex limit cycles or even stable/
unstable motions in the phase space, for unknown mathe-
matical expressions of similar third order dynamical sys-
tem, the computationally tractable way for the
investigation of the chaos seems to be the characterisation
of the observed time series. The Taken’s theorem says that
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the original attractor could be reconstructed from the
observation of just one state variable using the time delay
embedding method [10]. In the time delay reconstruction
method, the dynamics of the chaotic attractors is approxi-
mated in the phase space by plotting the observed time
series and its delayed versions along orthogonal axes and
finding the delay that has got maximum span in the phase
space [10,11].

We predominantly report similar chaotic attractors
evolved over the basic Lorenz system of equations by
changing two and three state equations together using
the GP. We use standard nonlinear terms in the Lorenz
family like the cross product and square terms in com-
bination with sinusoidal terms, giving rise to multiple
equilibrium points and hence very complex dynamical
behaviour in the phase space e.g. with infinite number of
equilibrium points [12,13].

Previous attempts have looked at chaotic dynamical
systems modelling through the use of genetic program-
ming [14,15] using nonlinear autoregressive moving aver-
age with exogenous inputs or NARMAX models. The papers
try to reproduce the dynamics of the Chua circuit through
the nonlinear autoregressive models with different lags
and orders. They also use multi-objective genetic algo-
rithms to obtain a set of parsimonious models which can
reproduce the original behaviour of the known chaotic
attractor. The disadvantage of the paper is that the
obtained expressions have multiple time delay terms in
them, which are more complex than the ones obtained
intuitively (i.e. which have three coupled first order non-
linear differential terms). Also, due to the method
employed, the obtained chaotic dynamics are very similar
to the original attractor and their phase portraits do not
differ drastically, i.e. new types of chaotic attractors with
totally different phase space dynamics are difficult to
obtain using this method.

There have been attempts of evolving new single state
discrete time chaotic dynamical systems using the concept
of GP and study of their bifurcation diagrams [16]. Similar
work has been done in [17] using evolutionary algorithms
and in [18] using analytical programming techniques. The
technique has also been extended to higher number of
states and used for evolutionary reconstruction of continu-
ous time chaotic systems [19]. The present paper uses a
MGGP paradigm to evolve multiple expressions for the
state variables simultaneously. The multi-gene approach
helps in obtaining new sets of dynamical equations which
can show completely different phase space dynamics. This
fact is exploited in the GP algorithm to find new sets of
chaotic dynamical systems by maximising the LLE.

This is the first paper of its kind that reports not only a
single or a handful of attractors by varying the basic Lorenz
system of equations like Rossler, Chen, Lu, Liu etc., but over
hundreds of new interesting differential equation struc-
tures along with their parameters and Lyapunov expo-
nents. The generic method proposed in this paper can be
viewed as the first step towards explaining very complex
chaotic motions hidden in various physical systems, which
could be obtained by mixing the Lorenz equation with sim-
ple transcendental like sinusoids [20], which has got infi-
nite number of equilibria.

2. Genetic programming to evolve new chaotic
attractors

2.1. Basics of genetic programming

Genetic programming is an intelligent algorithm which
is capable of automatically evolving computer programs
to perform a given task [21,22]. The GP algorithm has
been applied to a variety of practical applications in
human competitive engineering design [23]. GP has been
used for symbolic regression to fit analytical nonlinear
expressions to do prediction for any given experimental
input-output data set [24,25]. Essentially it can evolve
the structure and parameters of a nonlinear expression
by minimising the mean squared error (MSE) between
the predicted and the observed values. This expression
is analytic in nature and is therefore amenable to mathe-
matical analysis. The present work exploits this paradigm
to evolve analytical expressions for chaotic attractors, by
trying to maximise the LLE of each of the nonlinear
dynamical systems.

The GP algorithm is based on the Darwinian principle
of evolution and survival of the fittest. The recently intro-
duced multi-gene GP or MGGP [24] is used in the present
study. Each state equation which the GP searches is
represented by one gene. If the GP simultaneously
searches for two state equations, then they are repre-
sented by two separate genes and together they consti-
tute one individual. These genes can be represented in
the form of a tree structure as shown in Fig. 1. In the
beginning, the individuals are randomly initialized within
the feasible space. Then they undergo reproduction, cross-
over and mutation to evolve fitter individuals in the sub-
sequent generations. Crossover refers to the interchange
of genetic material among the solutions. Mutation on
the other hand refers to a random change within a gene
itself. The crossover and mutation operations are stochas-
tic ones and their probability of occurrence is pre-speci-
fied by the user. The tree structure representation as
shown in Fig. 1 is useful for doing the cross over and
mutation operations algorithmically. Generally the maxi-
mum number of levels in a tree is confined to a specific
small number to decrease the bloat in the solutions and
also to reduce the run time of the algorithms. Here bloat
refers to the case where the GP goes on evolving very
complicated nonlinear expressions, without significant
increase in the performance metric (i.e. the objective
function) [23].

The MGGP algorithm, as introduced in [24], uses a tree
structure to represent each sub-gene and a weighted
combination of these sub-genes are used to represent
one individual gene. In this paper, we use the sub-genes
to represent each of the state equations of the chaotic
attractor, but we do not use the weights. Therefore the
whole dynamical system is represented by one gene
which has multiple sub-genes for each of the different
state variables. So for example, if the objective is to
evolve only two of the three state equations of the
dynamical system, then two sub-genes would represent
the overall system (since the other state equation is
constant).
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