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tions are represented.
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1. Introduction

In nonlinear physics, solitons are determined as solitary
waves which interact elastically just like particles do.
Similar nonlinear processes occur in different physical
phenomena, for example, in ionospheric plasma. Physical
properties of plasma may significantly change during
active effect on the ionosphere in the result of Earth mag-
netosphere compression by solar wind. It leads to the fact
that wave processes in the ionosphere are described by
solitary waves. A special case is the appearance of solitons
in the ionospheric plasma. During collisions, such waves
interact elastically without attenuation. Many equations,
admitting soliton solutions, can be obtained from a hydro-
dynamic approximation during mathematical modeling of
similar systems.

The paper considers the equations which admit soliton
solutions. Depending on a soliton solution, it is possible to
determine the equation which has a similar solution. The
equation class is quite extensive. There are some nonlinear
equations which admit N-soliton equations. At present,
completely integrable equation hierarchies by Lax,
Sawada-Kotera, Kaup Kupershmidt are known [1-8]. The
N-soliton solution is a very strong condition which
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depends on the structure of linear and nonlinear sum-
mands of the equation and its coefficients. However, there
are equation classes with one- or two-soliton solutions but
which do not have N-soliton solution. The condition for
two-soliton solution is considered in the paper [9].
Though, the structure of these equations and their hierar-
chy are not specified there.

Classical example of the equation with the N-soliton
solution is the Korteweg-de Vries (KdV) equation

U + 6Uly + Uy =0 (1)

Consider some nth order partial differential equation
E(u, Uy, uyll, Ugylly, u2, . ..) with polynomial nonlinearities in
(1 + 1) variables. Solution u(x,t) is meromorphic if it has
only finite number of poles in its Laurent expansion:

uxt) = 3 e 0f @)
k=—m

where degree m is called a singular order of equation [2,3].
It can be obtained by substitution u(¢) = cim where 9; ~ 0.
For the KdV Eq. (1) we have
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Equalling poles to 0, we get m+3 =2m+ 1, so u has
degree m = 2. Of course this is not the necessary condition
for two-soliton solutions (2SS). This condition is used to
choose nonlinear terms of the nth order equations.

We denote the nth order partial differential equation of
a singular order m as Ej, (u). Hirota’s t-function [2,10] for
E;,(u) equation is defined as

am
ux,t) = KW log T(x,t) 4)
For example, for the KdV equation one-soliton solution
(solitary wave) can be expressed as
82
u(x,t) = KW log(1 + exp(px — qt)) (5)

and 2SS

2
u(x,t) =K % In {1+ exp(p1x — q;t) + exp(pox — g>t)
+0t12 €XpP((py + P2)X — (41 +G2)0)} (6)

2
where o3 = (ﬁ:;ﬂ;) , Di, q; are constants.

We say that an equation is partially integrable if it has a
2SS in Hirota’s form. A remarkable fact is that some equa-
tions with soliton-type solutions form hierarchies (Lax and
Sawada-Kotera equations), i.e. they admit the same type of
solitons. For example, famous KdV equation is the first ele-
ment in the Lax hierarchy.

Our primary goal is to investigate the existence of high
order E} equations with two-soliton solutions [1,10,11]. All
these equations have terms with 9y of singular order m = 2
and only one term with 9,

E3(U) = Uy + @y Ully + Upex

E5 (1) = Up + 04 Ul + GoU2Uy + G3llxllyy + Usuen

E; (u) =uc + a]”i + AUl Uxx + A3UUxxxxx + a4u2uxxx
+ a5u3ux + AUy Uxxxx 1 A7 UxxUxxx + Unxxxxxx

and so on, for arbitrary large n. We want to know if there
are other equations with the same singular order of terms,
but they differ from the Lax and Sawada-Kotera
hierarchies.

2. Soliton solutions for E;

We take a t-function expansion
T=1+¢f +&f, +Ef5+-, (7)

where ¢ is an arbitrary complex parameter. Then we obtain
substitution for 2SS solution [1,10,12]:

f1(x,t) = exp(p1x — q;t) + exp(p,x — qyt) 8)
fa(x,t) = o2 €Xp((py + P2)X — (@ + Gy)t) 9)
fix,t)=0, i>3 (10)

— Ru01.1.0,.05) i i -
o2 = gt pratprey Is a rational function of complex parame

ters p;, g;. After substituting (8)-(10) into E; we equal the
coefficients at powers of &. The resulting algebraic system
depends on a;, oy, coefficients for each order n. Direct
computation of the linear part u, +u; leads to q; =p?,

which is called a dispersion relation [1]. So we are going
to obtain explicit form for denominator S, of «;,, when

q=pri=12.

With

" o 0

aXnJru&jLa, n=3,57,... (11)

where u(x, t) is 2-soliton substitution of (7) by (8)-(10), we
equal coefficients at ¢. Calculating the coefficient at & from
the expansion above, we get polynoms S,,.

3(py +p2)

5(p1 +P2)* (P + 1Py +13)

7(py +P2) (0% + 102 +P3)

3(py +py)* (395 +9p3p, + 19pip7 + 23p}p}

+19p3p3+9p,p3 +3p3)

Si1=11(p; +p,)* (012 + PP +03) (0° + 3103
+7pp3+9p7p3 +7p1p3 + 3PP, +15)

Si3=13(p; ""pz)2 (plz +D1D> +p§)2

x (p2°+3p,p3+ 8P3p; + 11pip} + 8pip3 + 3p%p, + 1)

2

[
+
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Sis = (py +p;)(15p12 + 15pi2 +90p,p}' +90p}'p,
+365p,°pi +1000p;p7 +2003p3p7 +3002p]p}
+3433p5p$ +3002p3p] +2003 p3p§ +1000p3p} +365p3pi°)

These polynomials can be derived by horizontal sum-
mation of neighbor elements in a binomial triangle, as
shown below.

1.1
1,3,3,1
1,5,10,10,5,1
1,7,21,35,35,21,7,1
1,9,36,84,126,126,84,36,9,1
1,11,55,165,330,462,462,330,165,55,11,1
1,13,78,286,715,1287,1716,1716,1287,715,286,78,13,1
I
3,6,3
5,15,20,15,5
7,28,56,70,56,28,7
9,45,120,210,252,210,120,45,9
11,66,220,495,792,924,792,495,220,66,11
13,91,364,1001,2002,3003,3432,3003,2002,1001,364,91,13

For every integer n roots of S, lie on a curve defined by
the following way (see Fig. 1): Re(z) € (—1,—1) implies a
unit circle centered at (0,0), Re(z) € (—1,0) implies a unit
circle centered at (—1,0), Re(z) = —] implies a line
Re(z) = 1 minus a segment bounded by the first two circles.

At last, Re(z) = —1,0 are limit points when n — occ.
Now we should define the numerator R, of o,. Let

k
Sn= Py +D2) (P2 +P1Py +P3) Tu(py.py), k=0,1,2
(12)

Direct computation gives two variants

Ra(p1,P2) = Sn(=DP1,D2) (13)
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