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a b s t r a c t

In this work, we investigate the synchronization in oscillators with conjugate coupling in
which oscillators interact via dissimilar variables. The synchronous dynamics and its stabil-
ity are investigated theoretically and numerically. We find that the synchronous dynamics
and its stability are dependent on both coupling scheme and the coupling constant. We
also find that the synchronization may be independent of the number of oscillators.
Numerical demonstrations with Lorenz oscillators are provided.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The study of synchronization in coupled periodic oscil-
lators has been active since the early days of physics [1,2].
Chaos implies sensitive dependence on initial conditions,
with nearby trajectories diverging exponentially, and the
synchronization among chaotic oscillators has become a
topic of great interest since 1990 [3,4]. The general theories
on complete synchronization in which the distance
between states of interacting identical chaotic units
approaches zero for t !1 have been well framed [5–7].
In these theories, chaotic oscillators interact with each
other through the same (nonconjugate) variables of differ-
ent oscillators. However, coupling via dissimilar (conju-
gate) variables is also natural in real situations [8,9]. One
example is the coupled-semiconductor-laser experiments
by Kim and Roy [10], where the photon intensity fluctua-
tion from one laser is used to modulate the injection cur-
rent of the other, and vice versa. In the nonconjugate
coupling case, the interaction vanishes with the buildup
of complete synchronization and the synchronous state is
a solution of isolated system. In contrast, the interaction

in the conjugate coupling case may stay nonzero even
when oscillators are synchronized.

The conjugate coupling has been used to realize the
amplitude death [11,12] in coupled identical units, the
phenomenon in which unstable equilibrium in isolated
unit becomes stable with the assistance of coupling, in sev-
eral recent works [13–15]. Interestingly, the realized
amplitude death in those works is indeed one special type
of synchronization. Then questions arise: Can synchroniza-
tion in chaotic oscillators with conjugate coupling be real-
ized? What is the synchronous state in chaotic oscillators
with conjugate coupling and how about its stability?

The main goal in this work is to theoretically investigate
the synchronous dynamics and its stability in a ring of
identical chaotic oscillators with conjugate coupling by fol-
lowing the methods in Refs. [5,7]. The statements are dem-
onstrated through numerical simulations with the Lorenz
oscillators. We also show that the statements are valid
for regular random networks in which each oscillator has
the same number of neighbors.

2. Analysis

The model we consider takes the general form

_xi ¼ fðxiÞ þ �ðD2xiþ1 �D1xiÞ þ �ðD2xi�1 �D1xiÞ; ð1Þ
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where xi 2 Rn ði ¼ 1;2; . . . ;NÞ, f : Rn ! Rn is nonlinear and
capable of exhibiting rich dynamics such as chaos. The peri-
odic boundary conditions are imposed on Eq. (1). The
parameter � is a scalar coupling constant. D1 and D2 are

constant matrices describing coupling schemes. When
D1 ¼ D2, the interaction terms become
D1ðxiþ1 þ xi�1 � 2xiÞ and the ordinary non-conjugate cou-
pled oscillators are recovered in which oscillators interact
with each other through the same variables.

Now we are interested in the synchronous state; the
state resides on a synchronous manifold defined by
M ¼ fðx1; . . . ;xNÞ : xi ¼ sðtÞg where sðtÞ obeys the equation
of motion

_s ¼ fðsÞ þ 2�ðD2 �D1Þs: ð2Þ

To be noted that the synchronous state is not the solu-
tion of the isolated oscillator any more and its dynamics
depends on both the coupling constant � and the matrices
D1 and D2. Introducing perturbation n ¼ n1; . . . ; nN to the
synchronous state, we linearize equation (1) and have

d
dt

n ¼ I � ðDfðsÞ � 2�D1Þnþ �C�D2n: ð3Þ

DfðsÞ is the Jacobian matrix of f at s and I is the N � N unit
matrix. The coupling matrix C is an N � N matrix with zero
elements except that ci;iþ1 ¼ ci�1;i ¼ 1, which describes the
interaction among oscillators. The eigenvalues and eigen-
vectors of C satisfy C/i ¼ ki/i. By expanding n over the
eigenvectors of C, we have n ¼ RN

i¼1gi/i where gi are
time-dependent coefficients. Substituting the expansion
into Eq. (3) and equating the coefficient for each /i, we
have

_gi ¼ ½DfðsÞ � 2�D1 þ �kiD2�gi;

i ¼ 1;2; . . . ;N; ð4Þ

Fig. 1. (a) The bifurcation diagram of one oscillator in a pair of coupled Lorenz oscillators. (b) The bifurcation diagram of the synchronous motion which
follows Eq. (2) but with 2� replaced by �. (c) The synchronization error D is plotted against the coupling constant, which shows that the synchronization
error depends on � in a non-monotonic way. (d) The first two largest Lyapunov exponents of the synchronous motion (Kð2Þ1 in red and Kð2Þ2 in green) and the
largest Lyapunov exponent Kð1Þ1 of the transversal mode (in blue) are plotted against �. r ¼ 10; r ¼ 28, and b ¼ 1. The matrices D1 and D2 are presented in
the text. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. The dynamics of a pair of Lorenz oscillators with D1 and D2

presented in the text. (a) The synchronization error D is plotted against
the coupling constant. (b) The first two largest Lyapunov exponents of the
synchronous motion (Kð2Þ1 in red and Kð2Þ2 in green) and the largest
Lyapunov exponent Kð1Þ1 of the transversal mode (in blue) are plotted
against the coupling constant. r ¼ 10; r ¼ 28, and b ¼ 1. (For interpre-
tation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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