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a b s t r a c t

Cellular Automata are discrete-time dynamical systems on a spatially extended discrete
space which provide paradigmatic examples of nonlinear phenomena. Their stochastic
generalizations, i.e., Probabilistic Cellular Automata (PCA), are discrete time Markov chains
on lattice with finite single-cell states whose distinguishing feature is the parallel character
of the updating rule. We study the ground states of the Hamiltonian and the low-temper-
ature phase diagram of the related Gibbs measure naturally associated with a class of
reversible PCA, called the cross PCA. In such a model the updating rule of a cell depends
indeed only on the status of the five cells forming a cross centered at the original cell itself.
In particular, it depends on the value of the center spin (self-interaction). The goal of the
paper is that of investigating the role played by the self-interaction parameter in connec-
tion with the ground states of the Hamiltonian and the low-temperature phase diagram of
the Gibbs measure associated with this particular PCA.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cellular Automata (CA) are discrete-time dynamical
systems on a spatially extended discrete space. They are
well known for – at the same time – being easy to define
and implement and for exhibiting a rich and complex non-
linear behavior as emphasized for instance in [37,38] for
CA on one-dimensional lattice. See [22] to precise the con-
nections with the nonlinear physics. For the general theory
of deterministic CA we refer to the recent paper [20] and
references therein.

Probabilistic Cellular Automata (PCA) are CA straight-
forward generalization where the updating rule is stochas-
tic. They inherit the computational power of CA and are
used as models in a wide range of applications (see, for

instance, the contributions in [32]). From a theoretic per-
spective, the main challenges concern the non-ergodicity
of these dynamics for an infinite collection of interacting
cells. Ergodicity means the non-dependence of the long-
time behavior on the initial probability distribution and
the convergence in law towards a unique stationary prob-
ability distribution (see [34] for details and references).
Non-ergodicity is related to critical phenomena and it is
sometimes referred to as dynamical phase transition.

Strong relations exist between PCA and the general
equilibrium statistical mechanics framework [36,16,23].
Important issues are related to the interplay between dis-
ordered global states and ordered phases (emergence of or-
ganized global states, phase transition) [28]. Altough, PCA
initial interest arose in the framework of Statistical Physics,
in the recent literature many different applications of PCA
have been proposed. In particular it is notable to remark
that a natural context in which the PCA main ideas are of
interest is that of evolutionary games [29–31].
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PCA dynamics are naturally defined on an infinite lat-
tice. Given a local stochastic updating rule, one has to face
the usual problems about the connections between the
PCA dynamics on a finite subpart of the lattice and the
dynamics on the infinite lattice. In particular, it was stated
in [17] for translation-invariant infinite volume PCA with
positive rates,1 that the law of the trajectories, starting from
any stationary translation-invariant distribution, is the
Boltzmann–Gibbs distribution for some space–time associ-
ated potential. Thus phase transition for the space–time po-
tential is intimately related to the PCA dynamical phase
transition.

Moreover, see [14, Proposition 2.2], given a translation-
invariant PCA dynamics, if there exists one translation-
invariant stationary distribution which is a Gibbs measure
with respect to some potential on the lattice, then all the
associated translation-invariant stationary distributions
are Gibbs with respect to the same potential.

In this paper we shall consider a particular class of PCA,
called reversible PCA, which are reversible with respect to a
Gibbs-like measure defined via a translation invariant mul-
ti-body potential. In this framework we shall study the
zero and low-temperature phase diagram of such an equi-
librium statistical mechanics-like system, whose phases
are related to the stationary measures of the original PCA.

We shall now first briefly recall formally the definitions
of Cellular Automata and Probabilistic Cellular Automata
and then describe the main results of the paper.

1.1. Cellular Automata

Cellular Automata are defined via a local deterministic
evolution rule. Let K � Zd be a finite cube with periodic
boundary conditions.

Associate with each site i 2 K (also called cell) the state
variable ri 2 S0, where S0 is a finite single-site space and
denote by X :¼ SK

0 the state space. Any r 2 X is called a
state or configuration of the system.

In order to define the evolution rule we consider I, a sub-
set of the torus K, and a function fI : SI

0 ! S0 depending on
the state variables in I. We also introduce the shift Hi on the
torus, for any i 2 K, defined as the map Hi : X! X

ðHirÞj ¼ riþj: ð1:1Þ

The configuration r at site j shifted by i is equal to the con-
figuration at site iþ j. For example (see Fig. 1.1) set j ¼ 0,

then the value of the spin at the origin 0 will be mapped
to site i. The Cellular Automaton on X with rule fI is the se-
quence rð0Þ;rð1Þ; . . . ;rðtÞ; . . . for t a positive integer, of
states in X satisfying the following (deterministic) rule:

riðtÞ ¼ fIðHirðt � 1ÞÞ ð1:2Þ

for all i 2 K and t � 1.
Note the local and parallel character of the evolution:

the value riðt þ 1Þ, for all i 2 K, of all the state variables
at time t þ 1 depend on the value of the state variables at
time t (parallel evolution) associated only with the sites
in iþ I (locality).

1.2. Probabilistic Cellular Automata

The stochastic version of Cellular Automata is called
Probabilistic Cellular Automata (PCA). We consider a proba-
bility distribution fr : S0 ! ½0;1� depending on the state r
restricted to I; we drop the dependence on I in the notation
for future convenience. A Probabilistic Cellular Automata is
the Markov chain rð0Þ;rð1Þ; . . . ;rðtÞ; . . . on X with transi-
tion matrix

pðr;gÞ ¼
Y
i2K

f HirðgiÞ ð1:3Þ

for r;g 2 X. We remark that f depends on Hir only via the
neighborhood iþ I. Note that, as in the deterministic case,
the character of the evolution is local and parallel.

1.3. Description of the problem and results

Under suitable hypotheses on the probability distribu-
tion fr, for K finite, the Markov chain is irreducible and
aperiodic, so that a unique stationary probability measure
exists. On the other hand, irreducible and aperiodic PCA are
in general not reversible. As already proven in [21,34,18]
there exists a class of PCA which are reversible with re-
spect to a Gibbs-like probability measure [14, Proposition
3.1] and, hence, they admit a sort of Hamiltonian. These
models will be called reversible PCA (see [24, Section 3.5]
for more details).

From the results in [14], see for instance Proposition 3.3
therein, it is possible to deduce that these Gibbs-like mea-
sures are either stationary or two-periodic for the PCA.
Therefore it is quite natural to compare the behavior of
these distributions to the one of the statistical mechanics
counterpart.

Moreover, it is worth mentioning that also non-equilib-
rium properties of the PCA dynamics have been widely
investigated. In [25], in the attractive reversible case and
in absence of phase transition, the equivalence between
an equilibrium weak-mixing condition and the conver-
gence towards a unique equilibrium state with exponential
speed was proven. In [1,8,7,9,27] the metastable behavior
of a certain class of reversible PCA has been analyzed. In
this framework the remarkable interest of a particular
reversible PCA has been pointed out, called the cross PCA
(see Section 3). It is a two-dimensional reversible PCA in
which the updating rule of a cell depends on the status
of the five cells forming a cross centered at the cell itself.
In this model, the future state of the spin at a given cell

Fig. 1.1. Schematic representation of the action of the shift Hi defined in
(1.1).

1 A PCA is said to be with positive rates if the local updating rule is a
distribution giving positive probability to any cell-state.
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