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a b s t r a c t

We here present a model of nonlinear dynamics of microtubules (MT) in the context of
modified extended tanh-function (METHF) method. We rely on the ferroelectric model of
MTs published earlier by Satarić et al. [1] where the motion of MT subunits is reduced
to a single longitudinal degree of freedom per dimer. It is shown that such nonlinear model
can lead to existence of kink solitons moving along the MTs. An analytical solution of the
basic equation, describing MT dynamics, was compared with the numerical one and a per-
fect agreement was demonstrated. It is now clearer how the values of the basic parameters
of the model, proportional to viscosity and internal electric field, impact MT dynamics.
Finally, we offer a possible scenario of how living cells utilize these kinks as signaling tools
for regulation of cellular traffic as well as MT depolymerisation.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Microtubules are major cytoskeletal proteins. They are
hollow cylinders formed by protofilaments (PF) represent-
ing series of proteins known as tubulin dimers [2,3]. In vivo
there are usually 13 longitudinal PFs covering the cylindri-
cal walls of MTs. The inner and the outer diameters of the
cylinder are 15 nm and 25 nm, while its length may span
dimensions from the order of micrometer to the order of
millimetre. Each dimer is an electric dipole whose length
and longitudinal component of the electric dipole moment
are l = 8 nm [2–4] and p = 337 Debye [5], respectively. The
constituent parts of the dimers are a and b tubulins, corre-
sponding to positively and negatively charged sides,
respectively [2–4].

In this paper we demonstrate how METHF method [6–
10] can be used in the study of nonlinear dynamics of

MTs. The paper is organized as follows. In Section 2 we
explain the well known model for MTs we rely on [1].
The modification of the model presented in this paper is
a generalization of the original one and will be referred
to as u-model. The model brings about a crucial nonlinear
differential equation, describing nonlinear dynamics of
MTs. In Section 3 we briefly describe METHF method. Then
we solve the basic nonlinear differential equation,
mentioned above. We show that its solution is a kink-like
solitonic wave. This result is compared with numerical
solutions in Section 4. In Section 5 we study some general
solutions of the basic equation which may or may not have
physical meaning for MT dynamics. Finally, in Section 6,
we give concluding remarks. In particular, we emphasize
the biological importance of the studied kink-like solitons.

2. U-model of MTs

The model we rely on assumes only one degree of free-
dom of dimers motion within the PF [1]. This is a longitu-
dinal displacement of a dimer at a position n denoted as un
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@vinca.rs (S. Zeković), jovanap@vinca.rs (J. Petrović).
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and thus we call the model as u-model. To be more precise,
the u-model assumes an angular degree of freedom,
while the coordinate un is a projection of the top of the
dimer on the direction of PF.

The overall effect of the surrounding dimers on a dipole
at a chosen site n can be described by a double-well poten-
tial [1]

VdðunÞ ¼ �
1
2

Au2
n þ

1
4

Bu4
n ð1Þ

where A and B are positive parameters that should be esti-
mated. As an electrical dipole, a dimer in the intrinsic elec-
tric field of the MT acquires the additional potential energy
given by [1]

VelðunÞ ¼ �Cun; C ¼ qE; ð2Þ

where E is the magnitude of the intrinsic electric field at
the site n, as the dimer n exists in the electric field of all
other dimers, and q represents the excess charge within
the dipole. It is assumed that q > 0 and E > 0.

The Hamiltonian for one PF is represented as follows

H ¼
X

n

m
2

_u2
n þ

k
2
ðunþ1 � unÞ2 þ VðunÞ

� �
; ð3Þ

where dot means the first derivative with respect to time,
m is a mass of the dimer, k is an intra-dimer stiffness
parameter and the integer n determines the position of
the considered dimer in the PF [1]. The first term repre-
sents a kinetic energy of the dimer, the second one is a po-
tential energy of the chemical interaction between the
neighbouring dimers belonging to the same PF and the last
term is the combined potential

VðunÞ ¼ �Cun �
1
2

Au2
n þ

1
4

Bu4
n: ð4Þ

It is obvious that the nearest neighbour approximation is
used. However, this does not mean that the influence of
the neighbouring PFs is completely ignored as the value
of the electric field E depends also on the dipoles belonging
to the neighbouring PFs.

By using the generalized coordinates qn and pn, defined
as qn = un and pn ¼ m _un, applying a continuum approxima-
tion un(t) ? u(x, t) and making a series expansion

un�1 ! u� @u
@x

lþ 1
2
@2u
@x2 l2 ð5Þ

we can straightforwardly obtain an appropriate dynamical
equation of motion. In order to derive a realistic equation,
the viscosity of the solvent should also be taken into con-
sideration. This can be achieved by introducing a viscosity
force Fv ¼ �c _u into the obtained dynamical equation of
motion, where c is a viscosity coefficient [1]. All this brings
about the following nonlinear partial differential equation

m
@2u
@t2 � kl2 @

2u
@x2 � qE� Auþ Bu3 þ c

@u
@t
¼ 0: ð6Þ

It is well known that, for a given wave equation, a travel-
ling wave u(n) is a solution which depends upon x and t
only through a unified variable n

n � jx�xt; ð7Þ

where j and x are constants. Substitution of x and t by n
transforms Eq. (6) into the following ordinary differential
equation (ODE)

mx2 � kl2j2
� �

u00 � cxu0 � Auþ Bu3 � qE ¼ 0: ð8Þ

By introducing a dimensionless function w through the
relation

u ¼
ffiffiffi
A
B

r
w; ð9Þ

a much more convenient equation can be obtained. This fi-
nal ODE reads

aw00 � qw0 � wþ w3 � r ¼ 0; ð10Þ

and contains the following new parameters:

a ¼ mx2 � kl2j2

A
; ð11Þ

r ¼ qE

A
ffiffi
A
B

q ; ð12Þ

q ¼ cx
A

ð13Þ

and u0 � du
dn.

It was already mentioned that this approach
represented a certain improvement of the original model,
explained in [1]. If we compare Eq. (10) with the appropri-
ate one in [1] we can see that they are equal for a = �1.
This approach is more general as our intention is to calcu-
late a. We treat the parameters q and r as an input and
will determine values of dynamical parameters of the sys-
tem, including a. We will see that the final result depends
on q and r only, i.e. on the parameters that determine their
values.

The crucial Eq. (10) will be solved in the next section.
Before we proceed we want to discuss the potential energy
V(u), defined by Eq. (4). This step is very important to
understand the physics behind Eq. (10) and its solutions.
Using the procedure explained above we can easily obtain
the following convenient expression for this potential

VðwÞ ¼ A2

B
f ðwÞ; ð14Þ

where

f ðwÞ ¼ �rw� 1
2

w2 þ 1
4

w4: ð15Þ

The function f(w) is shown in Fig. 1 for two values of the
parameter r. For r = 0 the function f(w) and, consequently,
the potential V(w), is symmetric (curve a) while for the
increasing r the right minimum becomes deeper and the
left one becomes shallower and elevated. To find the values
of w for which f(w) reaches a maximum and minima we
should solve the equation

f 0ðwÞ ¼ �r� wþ w3 ¼ 0: ð16Þ

According to the procedure explained in Appendix we can
easily obtain the following roots of Eq. (16):
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