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a b s t r a c t

In this paper, we present an algorithm to construct an approximate convex hull of the
attractors of an affine iterated function system (IFS). We construct a sequence of convex
hull approximations for any required precision using the self-similarity property of the
attractor in order to optimize calculations. Due to the affine properties of IFS transforma-
tions, the number of points considered in the construction is reduced. The time complexity
of our algorithm is a linear function of the number of iterations and the number of points in
the output approximate convex hull. The number of iterations and the execution time
increases logarithmically with increasing accuracy. In addition, we introduce a method
to simplify the approximate convex hull without loss of accuracy.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Iterated function systems (IFS) define objects whose
geometry can be very complex. This geometry is deter-
mined by a given set of transformations. An attractor
may be evaluated by iterating these functions. Not only
is this evaluation expensive, but the analysis and charac-
terization (location, size) of the resulting shape can be
complex. It is therefore interesting to have a more conven-
tional form bounding the attractor.

The problem of bounding the IFS attractor occurs in
many tasks, including numerical fractal analysis or the
localization of an attractor. To guarantee the objects manu-
facturability, it is important to take into account the severe
production constraints. So we must be able to quickly eval-
uate the approximation and localization of an attractor.
The approximate convex hull may also be used to estimate
normal vectors at points of an IFS fractal for real time real-
istic visualization.

One of the most challenging tasks in applications with
dynamic virtual environments is fast and accurate collision
detection. A typical environment is modeled by a collection
of triangle meshes representing the scene geometry. Usu-
ally complex objects with fractal structure consist of a

large number of triangles. Construction of the approximate
convex hull will facilitate collision computations. In addi-
tion to accuracy, the approximate convex hull of various
parts of the IFS attractor can be constructed.

In this paper, we demonstrate how the properties of an
IFS may be exploited to compute convex hulls at any re-
quired accuracy. The article is organized in the following
way: we start by recalling the basic concepts of an IFS
and notations in Section 3. In Section 4, we examine each
step of Martyn’s approach [1] in order to generalize it to
3D and to optimize it. We show how to simplify the
approximation of the convex hull, i.e., to reduce the num-
ber of points without losing accuracy. We then focus on the
complexity of Martyn’s approach and the complexity of
our algorithm in Section 5. Finally, in Section 6, we com-
pare results obtained with our algorithm and with Mar-
tyn’s before concluding.

2. Related work

Methods to calculate approximations of the convex hull
of an IFS attractor have already been developed.

Strichartz and Wang [2] and Kenyon et al. [3] studied
the boundaries and the convex hulls of self-affine tiles that
can be considered as the attractors of very special affine
IFS, where all the transformations have the same linear
part.
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Lawlor and Hart [4] presented an algorithm to construct
a tight bounding polyhedron of the IFS attractor. An algo-
rithm expresses the IFS-bounding problem as a set of linear
constraints on a linear objective function, which can then
be solved via standard techniques for linear convex optimi-
zation. This method works for a predetermined number of
convex hull faces and shows the interactive rate only when
this number is small.

More recently, Duda [5] and Martyn [1] have presented
methods to calculate the approximate convex hull of the
affine IFS attractor. The two methods are similar. The for-
mer is based on the so-called ‘‘width function’’ that returns
the nearest to the point bounding half-space in a given
direction. The latter is based on constructing a sequence
of balls that bound corresponding parts of an attractor to
approximate the convex hull. The approach is presented
in 2D only.

Another important problem in computing the convex
hull is to determine a bounding ball for the attractor of
an IFS.

Gentil [6] described an approach based on the dichoto-
mous search for the minimal radius of the ball that bounds
the attractor of an IFS. The approach can be applied in a
multi-dimensional space and calculates the result for a gi-
ven precision.

Hart and DeFanti [7] introduced a method which starts
with the unit ball centered at the origin. The algorithm
iteratively produces a sequence of balls converging to the
limit ball that bounds the attractor.

Rice [8] improved on Hart and DeFanti’s approach by
optimizing the radius of the bounding ball with the aid
of a generic optimization package. He also showed that
the center of the limit ball can be determined analytically
by solving a system of linear equations.

Martyn [9] showed that the solution of this system is
the centroid of the attractor with particular weights. To ob-
tain a better approximation, he presented a heuristic iter-
ative method called ‘‘balancing the attractor’’. The
algorithm is not limited by the dimension of the space in
which the attractor lies.

More recently, Martyn [10] presented a novel approach
to approximate the smallest disc to enclose an affine IFS
attractor at any accuracy. The method is based on a con-
cept of spanning points he introduced to describe the ex-
tent of an IFS attractor.

In this article, we study an approximation of the convex
hull of a given affine IFS attractor. This approximation will
be given in the polytope form. Our model can be considered
as a generalization and an optimization of Martyn’s method.
Our algorithm constructs a sequence of convex hull approx-
imations using the self-similarity property of the attractor in
order to reduce the number of necessary operations. In addi-
tion, we introduce a method to simplify the approximation
of the convex hull without losing accuracy.

3. Background and notations

In this section we recall the major definitions and prop-
erties of iterated function systems as well as establish the
notations used in this paper.

3.1. Iterated function system

Generally, an IFS is defined in a complete metric space
ðX; dÞ, where d is the associated metric. The transformation
T : X! X is called contracting if and only if there exists a
real s, 0 6 s < 1 such that d(T(x),T(y)) < s � d(x,y) for all
x; y 2 X. The minimal coefficient s which satisfies the
inequality is called the contraction coefficient of the trans-
formation T with respect to the metric d.

We are substantially interested in attractors that are
produced by an IFS composed of affine transformations.
Each transformation can be described as follows: Ti:
x ´ Lx + b, where L is the linear part and b is the vector
of translation.

Atkins et al. proved [11] that affine IFS, for which the
attractor exists, is hyperbolic. That means that there is a
metric equivalent to the usual one so that each Ti is con-
tracting. Note that hyperbolic IFS is not necessarily con-
tractive with respect to the usual euclidean metric.

In general case, it is a challenging task to determine con-
traction coefficients of the transformations. For our algo-
rithm it is sufficient to provide the contraction coefficient
majorants. Since all the metrics in finite dimensional space
are equivalent, in the implementation we determine the
contraction coefficients si for the euclidean metric because
of its simplicity of calculation. However, si > 1 does not imply
that IFS does not have the attractor. In the cases where $i:
si > 1 it is thus necessary to find another metric for which
IFS is contractive and to determine the appropriate contrac-
tion coefficient majorants. This problem is beyond the scope
of this article, for further informations see [11,12].

Thus, an affine IFS X; fTigN�1
i¼0

� �
consists of a finite set

{T0, . . . ,TN�1} of contracting affine transformations in a
complete metric space ðX; dÞ. Let HðXÞ be the space of
non-empty compact subsets of X. Let dH be the Hausdorff
distance induced by the metric d, i.e.:

dHðA;BÞ ¼maxfdðA;BÞ; dðB;AÞg;

where

dðA;BÞ ¼max
a2A

min
b2B

dða; bÞ:

Then ðHðXÞ; dHÞ is a complete metric space. The Hutch-
inson operator T : HðXÞ ! HðXÞ associated with the IFS is
defined by:

TðKÞ ¼
[N�1

i¼0

TiðKÞ:

If smax = maxi=0,. . .,N�1si < 1 then T is also contracting in
the complete metric space ðHðXÞ; dHÞ. According to Banach
fixed point theorem [13], T has a unique fixed pointA. This
fixed point is named the IFS attractor, i.e.:

A ¼
[N�1

i¼0

TiðAÞ: ð1Þ

The attractor of an IFS may be evaluated recursively.
That is, it can be approximated by a sequence of objects
fPngn2N, which converges to A. An initial element in the se-
quence defines by means of a primitive P 2 HðXÞ. The fol-
lowing elements are defined recursively:
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