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Abstract

In this paper, the global asymptotic stability of stochastic recurrent neural networks with discrete and distributed
delays is analyzed by utilizing the Lyapunov–Krasovskii functional and combining with the linear matrix inequality
(LMI) approach. A new sufficient condition ensuring the global asymptotic stability for delayed recurrent neural net-
works is obtained in the stochastic sense using the powerful MATLAB LMI Toolbox. In addition, an example is also
provided to illustrate the applicability of the result.
� 2007 Published by Elsevier Ltd.

1. Introduction

In the past two decades, different classes of neural networks with or without time delays, including Cohen–Gross-
berg neural networks [1], Cellular neural networks [2] and bidirectional associative memory networks [3] have been dis-
cussed. Although most neural systems are realized by software simulations, only hardware implementation can fully
utilize its advantages of parallel processing and error tolerance. However, these successful applications are greatly
dependent on the dynamic behaviors of neural networks. It is well known that stability is one of the main properties
for a crucial feature in the design of neural networks. The time delays are commonly encountered in various engineering
systems such as chemical processes, hydraulic and rolling mill systems, etc. These effects are unavoidably encountered in
the implementation of neural networks, and may cause undesirable dynamic network behaviors such as oscillation and
instability. Therefore, it is important to investigate the stability of delayed neural networks. A large number of the cri-
teria on the stability of neural networks have been derived in the literatures [4–11].

So far, most works on delayed neural networks have dealt with the stability analysis problems for neural networks
with discrete delays. Neural networks has a spatial nature due to the presence of parallel pathways with a variety of
axon sizes and lengths. So it is desirable to model them by introducing unbounded delays. In recent years there has
been a growing research interest in the study of neural networks with distributed delays. In fact, both discrete and
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distributed delays should be taken into account when a modeling a realistic neural network [12–15]. It should be
mentioned that using linear matrix inequality (LMI) approach the sufficient global asymptotic stability conditions have
been derived in [16,17] for a general class of neural networks with both discrete and distributed delays. Very recently,
Zhang et al. [18] studied global exponential stability for nonautonomous cellular neural networks with unbounded
delays. So far, there are only a few papers that have taken stochastic phenomenon into account in neural networks
[19–21]. Practically, such phenomenon always appears in the electrical circuit design of neural networks. Wang et al.
[22,23] were studied the exponential stability of uncertain stochastic neural networks with discrete and distributed
delays and robust stability for stochastic Hopfield neural networks with time delays.

Based on the above discussions, we consider a class of stochastic neural networks with unbounded distributed
delays. The main purpose of this paper is to study the global asymptotic stability for stochastic neural networks with
unbounded distributed delays. To the best of the authors’ knowledge there were no global stability results for stochastic
recurrent neural networks with unbounded distributed delays. By using Lyapunov–Krasovskii functional we obtain the
sufficient conditions for global asymptotic stability of stochastic recurrent neural networks, in terms of linear matrix
inequality (LMI), which can be easily calculated by MATLAB LMI toolbox. We also provide two numerical examples
to demonstrate the effectiveness of the proposed stability results.

2. Global stability results

Throughout the manuscript we will use the notation A > 0 (or A < 0) to denote that the matrix A is a symmetric and
positive definite (or negative definite) matrix. The notation AT and A�1 mean the transpose of A and the inverse of a
square matrix. If A, B are symmetric matrices A > B (A P B) means that A � B is positive definite (positive semi-
definite).

Consider neural network with discrete and distributed delays can be described by the following integro-differential
equations

x0iðtÞ ¼ �aixiðtÞ þ
Xn

j¼1

bijfjðxjðtÞÞ þ
Xn

j¼1

cijfjðxjðt � sjðtÞÞÞ þ
Xn

j¼1

dij

Z t

�1
kjðt � sÞfjðxjðsÞÞdsþ I i; ð1Þ

i = 1, 2, . . ., n, where xi(t) is the state of the ith neuron at time t, ai > 0 denotes the passive decay rate, bij, cij and dij are
the synaptic connection strengths, fj denotes the neuron activations, Ii is the constant input from outside the system, s(t)
represents the discrete transmission delay with _sðtÞ 6 g < 1 and the delay kernel kj is a real valued continuous function
defined on [0,+1] and satisfies, for each i,Z 1

0

kjðsÞds ¼ 1: ð2Þ

We assume that the neuron activation functions fj, j = 1, 2, . . ., n satisfy the following hypotheses, respectively:

ðH1Þ fj is bounded function for any j = 1, 2, . . ., n.
ðH2Þ 0 6 jfjðf1Þ � fjðf2Þj 6 Ljjf1 � f2j for all f1; f2 2 R; f1–f2:

Assume x� ¼ ðx�1; x�2; x�nÞ
T is an equilibrium point (1), one can derive from (1) that the transformation yi ¼ xi � x�i

transforms system (1) into the following system:

y0ðtÞ ¼ �AyðtÞ þ BgðyðtÞÞ þ Cgðyðt � sðtÞÞÞ þ D
Z t

�1
Kðt � sÞgðyðsÞÞds ð3Þ

where y = [y1, y2, . . . , yn]T, A = diag[a1, a2, . . ., an], B = [bij], C = [cij], D = [dij].
K(t � s) = diag[k1(t � s), k2(t � s), . . ., kn(t � s)], g(y) = [g1(y1), g2(y2), . . ., gn(yn)]T with gjðyjðtÞÞ ¼ fjðyjðtÞ þ x�j Þ�

fjðx�j Þ. Note that since each function fj(Æ) satisfies the hypotheses (H1)–(H2), hence each gj(Æ) satisfies

g2
j ðfjÞ 6 L2

j f
2
j ; fjgjðfjÞP

g2
j ðfjÞ
Lj

; 8fj 2 R; gjð0Þ ¼ 0:

Consider the following stochastic delayed recurrent neural networks with time varying delay is described by

dyðtÞ ¼ �AyðtÞ þ BgðyðtÞÞ þ Cgðyðt � sðtÞÞÞ þ D
Z t

�1
Kðt � sÞgðyðsÞÞds

� �
dt þ rðt; yðtÞ; yðt � sðtÞÞÞdwðtÞ ð4Þ
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