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a b s t r a c t

We analyze two types of stochastic discrete time multi-sector endogenous growth models,

namely a basic Uzawa–Lucas (1965, 1988) model and an extended three-sector version as in

La Torre and Marsiglio (2010). As in the case of sustained growth the optimal dynamics of

the state variables are not stationary, we focus on the dynamics of the capital ratio variables,

and we show that, through appropriate log-transformations, they can be converted into

affine iterated function systems converging to an invariant distribution supported on some

(possibly fractal) compact set. This proves that also the steady state of endogenous growth

models—i.e., the stochastic balanced growth path equilibrium—might have a fractal nature.

We also provide some sufficient conditions under which the associated self-similar measures

turn out to be either singular or absolutely continuous (for the three-sector model we only

consider the singularity).

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Almost thirty years after the seminal work of [7], it is

now well known that also traditional (macro)economic mod-

els may give rise to complicated dynamics, including ran-

dom dynamics eventually converging to (possibly singular)

invariant measures supported on fractal sets. [32] borrow-

ing from the iterated function system (IFS) literature [1,12,45]

firstly show that standard stochastic economic growth mod-

els may show optimal dynamics defined by an IFS. The tra-

ditional one-sector growth model with Cobb–Douglas pro-

duction and logarithmic utility has been extensively studied

later. [28] shows that its optimal path converges to a singu-

lar measure supported on a Cantor set, characterizing singu-
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larity versus absolute continuity of the invariant probability

in terms of the parameters’ values. [29–31] further general-

ize the model and provide also an estimate of the Lipschitz

constant for the maps of the optimal policy defined by an

IFS.1 Only recently, the analysis has been extended in order

to consider two-sector growth models, nowadays predom-

inant in economic growth theory. [17] show that in a two-

sector model with physical and human capital accumulation

the optimal dynamics for the state variables can be converted

through an appropriate log-transformation into an IFS con-

verging to an invariant measure supported on a generalized

Sierpinski gasket.

The aim of this paper it to further extend the analysis

of fractal outcomes in optimal economic growth models by

1 Other recent applications of the IFS theory showing that some economic

growth model converge to an invariant distribution supported on a Cantor

set are [24] and [39]. Specifically, [25] analyzes a two-sector Solow model,

while [39] consider the sustainability problem in a stochastic economy–

environment model.
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studying the behavior of multi-sector endogenous growth

models. Indeed, thus far the focus has always been placed

on neoclassical growth models, in which at steady state the

economic growth rate is null, and nothing has been said on

whether also a perpetually growing economy (i.e., an econ-

omy experiencing a strictly positive steady state growth rate)

may achieve a fractal-type steady state. We thus analyze

two alternative models of endogenous growth, specifically a

two-sector and a three-sector model, based on the Uzawa–

Lucas [23,44] and [16] models, respectively. We show that

even whenever perpetual growth is admissible the economy

may develop along a (stochastic) balanced growth path equi-

librium characterized by a fractal nature. However, since in

such a framework the optimal dynamics of (physical, hu-

man and technological) capital are not stationary, we con-

sider the dynamics of the capital ratio variables (specifi-

cally, the physical to human capital and technological to

human capital ratios) and show that, through appropriate

log-transformations, they can be converted into affine IFS

converging to some distribution supported on a compact set

which may be a fractal.2 We then also provide some sufficient

conditions under which the associated self-similar measures

turn out to be singular and absolutely continuous.

The paper proceeds as follows. In Section 2 the main re-

sults from the IFS theory that we will need in our analysis are

briefly recalled and novel sufficient conditions (Theorem 5)

for singularity of the invariant distribution are provided for

a special class of two-dimensional affine IFS. In Section 3

we consider the simplest form of multi-sector endogenous

growth models, namely a Uzawa–Lucas [23,44] model driven

by human capital accumulation. In Section 4 we analyze an

extended version of the model, that is a three-sector model,

as in [16], in which human capital is endogenously allocated

across three (physical, human and knowledge) sectors. For

both the models, we derive the optimal dynamics and con-

struct an affine IFS conjugate to the optimal dynamics of

stationary variables (the physical to human capital, and, in

the latter, also the knowledge to human capital ratios). We

provide, directly in terms of parameters of the model, suffi-

cient conditions for the attractor of this conjugate IFS to be

a fractal set (the Cantor set for the two-sector model and

a generalized Sierpinski gasket for the three-sector model).

We also identify sufficient conditions under which the self-

similar measures turn out to be singular and absolutely con-

tinuous. In Section 5 we build some examples of attractors,

while Section 6 presents concluding remarks and proposes

directions for future research.

2. Iterated function systems

An Iterated Function System (IFS) is a finite collection of

contractive maps which are defined on a complete metric

2 The advantage of introducing such a log-transformation consists of ob-

taining an affine system topologically conjugate to the original nonlinear

system which allows to exploit the mathematical theory on IFS, thus simpli-

fying the characterization of existence and uniqueness of (stochastic) fixed

points. Without such a transformation, we would need to rely on more cum-

bersome ad-hoc approaches, like analyzing the eventual monotonicity prop-

erties of the optimal policies and dynamics, as, e.g., [8] did in their seminal

work.

space. This collection of maps allows to formalize the no-

tion of self-similarity and the definition of invariant set or

attractor of the IFS. An Iterated Function System with Prob-

abilities (IFSP), instead, consists of the above collection of

IFS maps together with an associated set of probabilities. An

IFSP induces a Markov operator on the set of all Borel prob-

ability measures and a notion of self-similar invariant mea-

sure. More details on these can be found in the fundamental

works by [2,12]. Applications of these methods are in image

compression, approximation theory, signal analysis, denois-

ing, and density estimation [11,13–15,18–22,26,27]. Now we

recall, without proofs, some well known basic properties that

will be used in the next sections.

We briefly introduce the notion of Hausdorff measure and

Hausdorff dimension (more details can be found in [1]). Let

(X, d) be a metric space and let diam (E) denote the diameter

of a subset E of X. Let s ≥ 0 and δ > 0, and define

Hs
δ(E) = inf

{
∞∑

k=1

[diam (Ek)]
s

: E ⊂
∞⋃

i=1

Ek, diam (Ek) < δ

}
.

Now let us define

Hs(E) = sup
δ>0

Hs
δ(E) (1)

Definition 1. Hs(E) in (1) is called the s-dimensional Haus-

dorff measure. Furthermore, there exists a unique number

s0 ≥ 0 such that Hs(E) = ∞ for 0 ≤ s < s0 and Hs(E) = 0 for

s > s0. The number s0 is called the Hausdorff dimension of E

and it is denoted by dimH (E).

In what follows, let (X, d) be a complete metric space and

w = {w0, . . . , wm−1} a set of m injective contraction maps

wi: X → X, to be referred to as an m-map IFS. Let 0 < λi

< 1 denote the contraction factors of wi and define λ :=
maxi∈{0,...,m−1} λi; clearly 0 < λ < 1. Associated with the IFS

mappings w0, . . . , wm−1 there is a set-valued mapping ŵ :

K(X ) → K(X ) defined over the space K(X ) of all non-empty

compact sets in X as

ŵ(A) :=
m−1⋃
i=0

wi(A), ∀A ∈ K(X ), (2)

where wi(A) = {wi(x) : x ∈ A} is the image of A under wi,

i = 0, 1, . . . , m − 1. Let ŵt (A) = ŵ
[
ŵt−1(A)

]
for all t ≥ 1, with

ŵ0(A) = A. The Hausdorff distance dH is defined as

dH(A, B) = max

{
sup
x∈A

inf
y∈B

d(x, y), sup
x∈B

inf
y∈A

d(x, y)

}
,

∀A, B ∈ K(X ).

Theorem 1 ([12]). (K(X ), dH ) is a complete metric space and

ŵ is a contraction mapping on (K(X ), dH ):

dH

(
ŵ(A), ŵ(B)

)
≤ λdH(A, B), ∀A, B ∈ K(X ).

Therefore, there exists a unique set A∗ ∈ K(X ), such that

ŵ(A∗) = A∗, the so-called attractor (or invariant set) of the IFS

ŵ. Moreover, for any A ∈ K(X ), dH

(
ŵt (A), A∗)→ 0 as t → ∞.

2.1. Invariant measures

Let p = (p0, p1, . . . , pm−1), 0 < pi < 1, i = 0, 1, . . . , m − 1,

be a partition of unity associated with the IFS mappings
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