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a b s t r a c t

Vaisman manifolds are strongly related to Kähler and Sasaki geometry. In this paper we
introduce toric Vaisman structures and show that this relationship still holds in the toric
context. It is known that the so-called minimal covering of a Vaisman manifold is the
Riemannian cone over a Sasaki manifold. We show that if a complete Vaisman manifold is
toric, then the associated Sasaki manifold is also toric. Conversely, a toric complete Sasaki
manifold, whose Kähler cone is equipped with an appropriate compatible action, gives rise
to a toric Vaisman manifold. In the special case of a strongly regular compact Vaisman
manifold, we show that it is toric if and only if the corresponding Kähler quotient is toric.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Toric geometry has been studied intensively, as manifolds with many symmetries often occur in physics and also
represent a large source of examples as testing ground for conjectures. The classical case of compact symplectic toric
manifolds has been completely classified by T. Delzant [1],who showed that they are in one-to-one correspondence to the so-
called Delzant polytopes, obtained as the image of the momentummap. Afterwards, similar classification results have been
given inmany different geometrical settings, some ofwhichwe brieflymention here. For instance, classification resultswere
obtained by Y. Karshon and E. Lerman [2] for non-compact symplectic toric manifolds and by E. Lerman and S. Tolman [3]
for symplectic orbifolds. The case when one additionally considers compatible metrics invariant under the toric action is
also well understood: compact toric Kähler manifolds have been investigated by V. Guillemin [4], D. Calderbank, L. David
and P. Gauduchon [5], M. Abreu [6], and compact toric Kähler orbifolds in [7]. Other more special structures have been
completely classified, such as orthotoric Kähler, by V. Apostolov, D. Calderbank and P. Gauduchon [8] or toric hyperkähler, by
R. Bielawski and A. Dancer [9]. The odd-dimensional counterpart, namely the compact contact toric manifolds, are classified
by E. Lerman [10], whereas toric Sasaki manifolds were also studied by M. Abreu [11,12]. These were used to produce
examples of compact Sasaki–Einstein manifolds, for instance by D. Martelli, J. Sparks and S.-T. Yau [13], A. Futaki, H. Ono
and G. Wang [14], C. van Coevering [15].

In the present paper, we consider toric geometry in the context of locally conformally Kählermanifolds. These are defined
as complex manifolds admitting a compatible metric, which, on given charts, is conformal to a local Kähler metric. The
differentials of the logarithms of the conformal factors glue up to a well-defined closed 1-form, called the Lee form. We are
mostly interested in the special class of so-called Vaisman manifolds, defined by the additional property of having parallel
Lee form. By analogy to the other geometries, we introduce the notion of toric locally conformally Kähler manifold. More
precisely, we require the existence of an effective torus action of dimension half the dimension of the manifold, which
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preserves the holomorphic structure and is twistedHamiltonian. I. Vaisman [16] introduced twistedHamiltonian actions and
they have been used for instance by S. Haller and T. Rybicki [17] and by R. Gini, L. Ornea andM. Parton [18], where reduction
results for locally symplectic, respectively locally conformal Kähler manifolds are given, or more recently by A. Otiman [19].

Vaisman geometry is closely related to both Sasaki and Kähler geometry. In fact, a locally conformally Kähler manifold
may be equivalently defined as a manifold whose universal covering is Kähler and on which the fundamental group acts
by holomorphic homotheties. For Vaisman manifolds, the universal and the minimal covering are Kähler cones over Sasaki
manifolds, as proven in [20,21]. On the other hand, in the special case of strongly regular compact Vaisman manifolds, the
quotient by the 2-dimensional distribution spanned by the Lee and anti-Lee vector fields is a Kähler manifold, cf. [22].

The purpose of this paper is tomake a first step towards the classification of toric Vaisman, ormore generally, toric locally
conformally Kählermanifolds, by showing that the abovementioned connections between Vaisman and Sasaki, respectively
Kähler manifolds, are still true when requiring the toric condition. For the precise statement of these equivalences, we refer
to Theorems 4.9, 4.11 and 5.1.

2. Preliminaries

A locally conformally Kähler manifold (shortly lcK) is a conformal Hermitian manifold (M2n, [g], J) of complex dimension
n ≥ 2, such that for one (and hence for all) metric g in the conformal class, the corresponding fundamental 2-form
ω := g(·, J·) satisfies: dω = θ ∧ω, with θ a closed 1-form, called the Lee form of the Hermitian structure (g, J). Equivalently,
there exists an atlas on M , such that the restriction of g to any chart is conformal to a Kähler metric. In fact, the differential
of the logarithms of the conformal factors are, up to a constant, equal to the Lee form. It turns out to be convenient to
denote also by (M, g, J, θ) an lcK manifold, when fixing one metric g in the conformal class. By ∇ we denote the Levi-Civita
connection of g .

We denote by θ ♯ the vector field dual to θ with respect to the metric g , the so-called Lee vector field of the lcK structure,
and by Jθ ♯ the anti-Lee vector field.

Remark 2.1. On an lcK manifold (M, g, J, θ), the following formula for the covariant derivative of J holds:

2∇X J = X ∧ Jθ ♯ + JX ∧ θ ♯, ∀X ∈ X(M),

or, more explicitly, applied to any vector field Y ∈ X(M):

2(∇X J)(Y ) = θ(JY )X − θ(Y )JX + g(JX, Y )θ ♯ + g(X, Y )Jθ ♯. (1)

In particular, it follows that ∇θ♯ J = 0 and ∇Jθ♯ J = 0.

Remark 2.2. On an lcK manifold (M2n, g, J, θ), a vector field X preserving the fundamental 2-form ω, also preserves the
Lee form, i.e. LXω = 0 implies LXθ = 0, as follows. As the differential and the Lie derivative with respect to a vector field
commute to each other, e.g. by the Cartan formula, we obtain:

0 = d(LXω) = LX (dω) = LX (θ ∧ ω) = LXθ ∧ ω + θ ∧ LXω = LXθ ∧ ω.

Since the map form Ω1(M) to Ω3(M) given by wedging with ω is injective, for complex dimension n ≥ 2, it follows that
LXθ = 0.

We now recall the definition of Vaisman manifolds, which were first introduced and studied by I. Vaisman [20,22]:

Definition 2.3. A Vaisman manifold is an lcK manifold (M, [g], J) admitting a metric in the conformal class, such that its Lee
form is non-zero and parallel with respect to the Levi-Civita connection of the metric.

Note that on a compact lcK manifold, a metric with parallel Lee form θ , if it exists, is unique up to homothety in its
conformal class and coincides with the so-called Gauduchon metric, i.e. the metric with co-closed Lee form: δθ = 0. In this
paper, we scale any Vaisman metric g such that the norm of its Lee vector field θ ♯, which is constant since θ is parallel,
equals 1.

Definition 2.4. The automorphism group of a Vaisman manifold (M, g, J, θ) is denoted by a slight abuse of notation
Aut(M) := Aut(M, g, J, θ) and is defined as the group of conformal biholomorphisms:

Aut(M) = {F ∈ Diff(M) | F∗J = J, [F∗g] = [g]}.

We emphasize here that we define the group of automorphisms like for lcK manifolds, namely we do not ask for an
automorphism of a Vaisman manifold to be an isometry of the Vaisman metric, but only to preserve its conformal class.
Hence, the Lie algebra of Aut(M) is:

aut(M) = {X ∈ X(M) | LX J = 0,LXg = fg, for some f ∈ C∞(M)}. (2)

We denote by isom(M) and hol(M) the Lie algebras of Killing vector fields with respect to the Vaismanmetric g , respectively
of holomorphic vector fields on (M, J).
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