
Journal of Geometry and Physics 107 (2016) 175–186

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Limit equation for vacuum Einstein constraints with a
translational Killing vector field in the compact hyperbolic
case
Romain Gicquaud a,∗, Cécile Huneau b

a Laboratoire de Mathématiques et de Physique Théorique, UFR Sciences et Technologie, Université François Rabelais, Parc de
Grandmont, 37300 Tours, France
b École Normale Supérieure, Département de Mathématiques et Applications 45, rue d’Ulm 75005 Paris, France

a r t i c l e i n f o

Article history:
Received 12 September 2014
Received in revised form 31 March 2016
Accepted 24 May 2016
Available online 31 May 2016

MSC:
primary 53C21
secondary 35Q75
53C80
83C05

Keywords:
Einstein constraint equations
Non-constant mean curvature
Conformal method

a b s t r a c t

We construct solutions to the constraint equations in general relativity using the limit
equation criterion introduced in Dahl et al. (2012). We focus on solutions over compact 3-
manifolds admitting a S1-symmetry group. When the quotient manifold has genus greater
than 2, we obtain strong far from CMC results.
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1. Introduction

General relativity describes the universe as a (3+ 1)-dimensional manifold M endowed with a Lorentzian metric g. The
Einstein equations describe how non-gravitational fields influence the curvature of g:

Ricµν −
Scal
2

gµν = 8πTµν,

where Ric and Scal are respectively the Ricci tensor and the scalar curvature of the metric g and Tµν is the sum of the
energy–momentum tensors of all the non-gravitational fields.

Einstein equations can be formulated as a Cauchy problem with initial data given by a set (M,g,K), where M is a 3-
dimensional manifold,g is a Riemannian metric on M and K is a symmetric 2-tensor on M .g and K correspond to the
first and second fundamental forms of M seen as an embedded space-like hypersurface in the universe (M, g) solving the
Einstein equations.
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It turns out that the Einstein equations imply compatibility conditions ong andK known as the constraint equations:
Scalg + (trg K)2 − |K |

2g = 2ρ, (a)
divg K − d(trg K) = j, (b)

(1.1)

where, denoting by N the unit future-pointing normal toM in M, one has

ρ = 8πTµνNµNν, ji = 8πTiµNµ.

We assume here that µ and ν go from 0 to 3 and denote spacetime coordinates while Latin indices go from 1 to 3 and
correspond to coordinates onM .

In this article, to keep things simple, we will consider no field but the gravitational one (vacuum case). As a consequence,
we impose T ≡ 0. We will also assume that the spacetime possesses a S1-symmetry generated by a spacelike Killing vector
field. This allows for a reduction of the (3+1)-dimensional study of the Einstein equations to a (2+1)-dimensional problem.
This symmetry assumption has been introduced and studied by Choquet-Bruhat andMoncrief in [1] (see also [2]) in the case
of a spacetime of the formΣ×S1

×R, whereΣ is a compact 2-dimensional manifold of genus G ≥ 2, S1 corresponds to the
orbit of the S1-action and R is the time axis. They proved the existence of global solutions corresponding to perturbations
of a particular expanding spacetime. In [1], they use solutions of the constraint equations with constant mean curvature
(CMC, i.e. constant trg K ) on the spacelike hypersurface Σ × S1

× {0} as initial data. The construction of such solutions is
fairly direct. In this article we shall generalize their construction tomore general initial data allowing for non-constantmean
curvature.

The method which is generally used to construct initial data for the Einstein equations is the conformal method which
consists in decomposing the metricg and the second fundamental formK into given data and unknowns that have to be
adjusted so thatg andK solve the constraint equations, see Section 2. The equations for the unknowns, namely a positive
function playing the role of a conformal factor and a 1-form, are usually called the conformal constraint equations. Extended
discussion of the conformal method can be found in a series of very nice articles by D. Maxwell [3–6].

These equations have been extensively studied in the case of constant mean curvature (CMC) since the system greatly
simplifies in this case. We refer the reader to the excellent review article [7] for an overview of known results in this
particular case. The non-CMC case remained open for a couple of decades. Only the case of nearly constant mean curvature
was studied.We refer for example to the pioneerwork of Isenberg andMoncrief [8]. Twomajor breakthroughswere obtained
in [9,10] and [11] concerning the far from CMC case. A comparison of these methods is given in [12].

In this article, we follow themethod described in [11]. Namely, we give the following criterion: if a certain limit equation
admits no non-zero solution, the conformal constraint equations admit at least one solution. The othermethod [9,10] would
require thatΣ is S2 so that it carries a metric with positive scalar curvature and has no conformal Killing vector field, which
is impossible.

This approach has been generalized to the asymptotically hyperbolic case in [13] and to the asymptotically cylindrical
case in [14]. The asymptotically Euclidean case [15] and the case of compact manifolds with boundary [16] are currently
work in progress since new ideas have to be found to get the criterion.

The outline of the paper is as follows. In Section 2, we show how the Einstein equations reduce to a (2+ 1)-dimensional
problem in the case of a S1-symmetry and exhibit the analog of the conformal constraint equations in this case.We also state
Theorem 2.1 which is the main result of this article and Corollary 2.3 which gives an example of application of Theorem 2.1.
Section 3 is devoted to the proof of Theorem 2.1. Finally, Section 4 contains the proof of Corollary 2.3.

2. Preliminaries

2.1. Reduction of the Einstein equations

Before discussing the constraint equations, we briefly recall the form of the Einstein equations in the presence of a
spacelike translational Killing vector field. We follow here the exposition in [2, Section XVI.3].

We recall that we want to write the Einstein equations on the manifold M = Σ × S1
× R, where Σ is a Riemannian

surface and R denotes the time direction, for some metric gwhich is invariant under translation along the S1-direction. We
let x3 denote the coordinate along the S1- direction (seen as R/Z), choose local coordinates x1, x2 onΣ and denote by x0 the
time coordinate.

A metric g on M admitting ∂3 as a Killing vector field has the form

g =g + e2γ

dx3 + A

2
,

whereg is a Lorentzian metric onΣ × R, A is a 1-form onΣ × R and γ is a function onΣ × R. Since ∂3 is a Killing vector
field,g , A and γ do not depend on x3. We set F = dA the field strength of A. The Ricci tensor Ric of g can be computed in
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