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a b s t r a c t

In the introductory section of the article we give a brief account of recent insights into
statistics of high and extreme values of disorder-generated multifractals following a recent
work by the first author with P. Le Doussal and A. Rosso (FLR) employing a close relation
between multifractality and logarithmically correlated random fields. We then substanti-
ate some aspects of the FLR approach analytically for multifractal eigenvectors in the
Ruijsenaars–Schneider ensemble (RSE) of random matrices introduced by E. Bogomolny
and the second author by providing an ab initio calculation that reveals hidden logarithmic
correlations at the background of the disorder-generated multifractality. In the rest we
investigate numerically a few representative models of that class, including the study of
the highest component of multifractal eigenvectors in the Ruijsenaars–Schneider ensemble.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. General setting

Multifractal patterns are patterns of intensities which
are characterized by a high variability over a wide range
of space or time scales, and by huge fluctuations which
can be visually detected. They have been observed and
investigated in many areas of science, from physics,
chemistry, geophysics, oceanology [1,2] to climate studies
[3] or mathematical finance [4,5]. The multifractal
approach has also proved relevant in fields such as growth
processes [8], turbulence [6,7], and the theory of quantum
disordered systems [9] (See Fig. 1).

In a d-dimensional lattice of linear size L and lattice
spacing a, thus containing M ¼ ðL=aÞd � 1 lattice sites,
multifractal patterns with intensities hi > 0 at different
sites i ¼ 1; . . . ;M are characterized by attributing a
different scaling hi � Mxi to each intensity, with exponents
xi forming a dense set. One of the most natural

characteristics of a multifractal is the function NMðxÞ
counting the number of points in the pattern with expo-
nents exceeding the value x. Introducing the density of
exponents qMðxÞ, so that NMðxÞ ¼

R1
x qMðyÞdy, multifrac-

tality is equivalent to the statement that such a density
behaves for M � 1 as
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where f ðxÞ, the singularity spectrum, is a function of x, and
cMðxÞ is of order unity. This is frequently referred to as the
multifractal Ansatz. The characteristic feature of multifrac-
tal patterns in systems with disorder, like Anderson
localisation transition and related phenomena, is the
existence of essential sample-to-sample fluctuations of
the prefactor cMðxÞ in different realizations of the disorder,
as well as fluctuations in the number and height of
extreme peaks of the pattern. Those fluctuations will be
the subject of our interest. At the same time multifractality
can be studied via the singularity spectrum f ðxÞ [10,11]. It
is typically a self-averaging convex function like the one
shown in Fig. 2. Some general insight into statistical
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properties of disordered multifractals have been obtained
in [12] and the content of that work is concisely
summarized below.

As is well-known [13,14] disorder-generated multifrac-
tal patterns of intensities hðrÞ are typically self-similar, i.e.
characterized by the power-law correlation of intensities
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where here and henceforth E Af g stands for the expected
value (the mean) of the random variable A. The lattice
model describes a situation where the relevant scales are
L and a, therefore it is natural to assume that intensities
do not vary much over the scale a and that they are uncor-
related at scale L. This can be expressed as
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If we make the assumption that Eq. (2) holds over the
whole range jr1 � r2j � a to jr1 � r2j � L, we directly get
from (4) and (5) the relations between exponents

yq;s ¼ dðfqþs � 1Þ; zq;s ¼ dðfqþs � fq � fs þ 1Þ; ð6Þ

so that the set of exponents fq is the only one needed to
characterize the spatial organization of such a multifractal
pattern [13,14].

It proves to be instructive to shift the focus from the
multifractal field hðrÞ to its logarithm VðrÞ ¼
ln hðrÞ � E ln hðrÞf g. Correlations of the field VðrÞ can be
obtained by deriving hhqhsi � hhqihhsi, given by Eqs. (2)
and (3), with respect to q and s, using the identity
d
ds hsjs¼0 ¼ ln h. Taking into account the relations (6) and
the fact that f0 ¼ 1 one arrives at the relation [15]

E Vðr1ÞVðr2Þf g ¼ �df000 ln
jr1 � r2j

L
; ð7Þ

where f000 is the second derivative of fq taken at q ¼ 0. We
thus conclude that provided the conditions (2) and (3) of
self-similarity and spatial homogeneity detailed above
are fulfilled, the logarithm of a disorder-generated
multifractal intensity must be necessarily a log-correlated
random field [15]. Note that the nature of the higher cumu-
lants is not fixed by this construction, and in particular
there is no particular reason to expect Gaussianity of the
field VðrÞ on general grounds. Moreover, had the field been
Gaussian the only possible shape of the singularity
spectrum f ðxÞ would be a simple parabola. In practice,
non-parabolic shapes are abundant in disordered
multifractals [9], although shapes extremely close to
perfect parabolas also occur, most notably in the Integer
Quantum Hall context [16].

The shift of attention from the multifractal field to its
logarithm is of conceptual and practical utility as extremes
of random fields and processes with logarithmic
correlations attracted recently a lot of attention in physics
[17–19], probability [20,21] and related areas. The most
studied object is the 2D Gaussian free field (GFF) which
is now believed to be as fundamental and rich as Brownian
motion, and naturally emerges in studies ranging from
quantum gravity and turbulence to financial mathematics.
One of the most powerful rigorous frameworks for analyz-
ing such fields and related processes relies upon the theory
of ‘‘multiplicative chaos’’ [22]. Another important source of

Fig. 1. Intensity of a multifractal wavefunction at the point of Integer Quantum Hall Effect. Courtesy of F. Evers, A. Mirlin and A. Mildenberger.

Fig. 2. Shape of a typical singularity spectrum.
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