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a b s t r a c t

We provide formulas to compute the coefficients entering the affine scaling needed to get a
non-degenerate function for the asymptotic distribution of the maxima of some kind of
observable computed along the orbit of a randomly perturbed dynamical system. This will
give information on the local geometrical properties of the stationary measure. We will
consider systems perturbed with additive noise and with observational noise. Moreover
we will apply our techniques to chaotic systems and to contractive systems, showing that
both share the same qualitative behavior when perturbed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A general problem in dynamical systems theory is to
give a quantitative characterization of the limiting invari-
ant sets like attractors or repellers, whose properties are
essential to understand the behavior of complex systems.
In the last years, the results of the Extreme Value Theory
(EVT) have brought new techniques that allow to quantify
the geometrical and dynamical properties of a certain class
of systems. In the case of absolutely continuous invariant
measures (acim), precise analytical results can be obtained
in terms of classical extreme value laws (EVLs) and depend
on the fulfillment of general mixing conditions and on the
observables considered [1–4]. In fact, those observable are
designed in such a way that extreme events are equivalent
to detect the recurrence of an orbit in a neighborhood of a
given point in the phase space. A collection of such

events, under appropriate renormalization, is distributed
according to one of the three classical EVLs, namely the
Gumbel, the Frechet and the Weibull distributions. The
values of the normalizing constants are linked to the local
behavior of the measure and, provided the dynamics is
chaotic and the measure is absolutely continuous, they
depend only on the number of extremes extracted and
on the phase space dimension. Several difficulties arise
whenever singular invariant measures are considered. In
[5,6] this problem was addressed almost numerically and
a few analytic results have been exhibited in [7,4,8,9].

Let us now explain in detail where the just indicated
problem is and how we could deal with it by introducing
random perturbations: this will constitute the first main
contribution of this paper. At this regard we need to come
back to basics and introduce the theory. Let us therefore
suppose that ðYnÞn2N is a sequence of real-valued random
variables defined on the probability space ðW;PÞ. We will
be interested in the distribution of the maximum
Mn :¼maxfY0;Y1; . . . ;Yn�1g when n!1. It is well known
that the limiting distribution is degenerate unless one pro-
ceed to a suitable re-scaling of the levels of exceedances.
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The precise formulation is the following: we have an
extreme value law for ðMnÞn2N if there is a non-degenerate
distribution function H : R! ½0;1� with Hð0Þ ¼ 0 and, for
every s > 0, there exists a sequence of levels ðunðsÞÞn2N
such that

lim
n!1

nPðY0 > unÞ ! s; ð1:1Þ

and for which the following holds:

lim
n!1

PðMn 6 unÞ ! 1� HðsÞ:

The motivation for using a normalizing sequence
ðunÞn2N satisfying (1.1) comes from the case when ðYnÞn2N
are independent and identically distributed. In this
i.i.d. setting, it is clear that PðMn 6 uÞ ¼ ðFðuÞÞn, being
FðuÞ the cumulative distribution function for the variable
u. Hence, condition (1.1) implies that

PðMn 6 unÞ ¼ ð1� PðY0 > unÞÞn � 1� s
n

� �n
! e�s;

as n!1. Note that in this case HðsÞ ¼ 1� e�s is the stan-
dard exponential distribution function. Let us now choose
the sequence un ¼ unðyÞ as the one parameter family
un ¼ y=an þ bn, where y 2 R and an > 0, for all n 2 N.
Whenever the variables Yi are i.i.d. and for some constants
an > 0; bn 2 R, we have PðanðMn � bnÞ 6 yÞ ! GðyÞ, where
the convergence occurs at continuity points of G, and G is
non-degenerate, then Gn will converge to one of the three
EVLs: Gumbel, Fréchet or Weibull. The law obtained
depends on the common distribution of the random vari-
ables, F.

When Y0;Y1;Y2; . . . are not independent, the standard
exponential law still applies under some conditions on
the dependence structure. These conditions will be stated
in detail later and they are usually designated by D2 and
D0; when they hold for ðYnÞn2N then there exists an extreme
value law for Mn and HðsÞ ¼ 1� e�s, see Theorem 1 in [10].
We want to stress that these two conditions alone do not
imply the existence of an extreme value law; they require,
even to be checked, that the limit (1.1) holds. It turns out
that for the kind of observables we are going to introduce,
and which are related to the local properties of the invari-
ant measure, the limit (1.1) is difficult to prove when the
invariant measure is not absolutely continuous, since one
needs the exact asymptotic behavior of that measure on
small balls. Instead it turns out that whenever the system
is randomly perturbed, the limit (1.1) is more accessible
and in particular it will be given by a closed formula in
terms of the strength of the noise, see Propositions 1 and
2 below. Moreover that formula could be used in a
reversed way (in the following we call this procedure
inverting the technique): since the sequence ðunÞn2N is now
uniquely determined for any n, a numerical sampling for
ðunÞn2N which provides convergence to the extreme value
law, will bring information on the local geometrical prop-
erties of the stationary measure: this approach was suc-
cessfully used, for instance, in [11,6].

We already showed in a preceding article [18] that ran-
dom perturbations of regular systems, in particular rota-
tions, induce the appearance of extreme value laws since
the perturbed systems acquires a chaotic behavior. We

pursue, and this is the second main issue of this paper,
the same objective here by considering two different kinds
of stochastic perturbations of (piecewise) contracting
maps. The first will be given by additive noise and in this
case our analysis will be mostly numerical. The second
one will be a sort of (rare) random contamination of a
deterministic orbit, and in this case we will announce
and state complete analytic results for the determination
of the limit (1.1) first, and for the successive checking of
the conditions D2 and D0.

2. Random dynamical systems

In this section we will introduce the two ways of per-
turbing a given dynamical system, the random transforma-
tions and the observational noise.

2.1. Random transformations

Let us consider a sequence of i.i.d. random variables
ðWkÞk2N with values ðxkÞk2N in a space Xe and with com-

mon probability distribution he. Let X � Rd be a compact
set equipped with the Lebesgue measure m defined on
the Borel r-algebra, and ðf xÞx2Xe

a family of measurable
transformations such that f x : X ! X for all x 2 Xe.1 Given
a point x 2 X and a realization x ¼ ðx1;x2; . . .Þ 2 XN

e of the
stochastic process ðWkÞk2N, we define the random orbit of
x as the sequence ðf n

xðxÞÞn2N, where

f 0
xðxÞ ¼ x and f n

xðxÞ ¼ f xn
� f xn�1

� � � � � f x1
ðxÞ 8n P 1:

The transformations f x will be considered as stochastic
perturbations of a deterministic map f, in the sense that
they will be taken in a suitable neighborhood of f whose
size will be determined by the value of e, see below. We
could therefore define a Markov process on X with transi-
tion function

Leðx;AÞ ¼
Z

Xe

1Aðf xðxÞÞdheðxÞ; ð2:1Þ

where A 2 X is a measurable set, x 2 X and 1A is the indica-
tor function of the set A. A probability measure le is called
stationary if for any measurable set A we have:

leðAÞ ¼
Z

X
Leðx;AÞdleðxÞ:

We call it an absolutely continuous stationary measure
(acsm), if it has a density with respect to the Lebesgue
measure.

Given a map f : X ! X, we will consider two kind of ran-
dom perturbations. The first one is the additive noise,
which corresponds to the family ðf xÞx2Xe

of random trans-
formations defined by

f xðxÞ ¼ f ðxÞ þx 8x 2 X:

1 In the following when we will refer to a dynamical system ðX; f ;lÞ we
will mean that f is defined on X and preserves the Borel probability measure
l; if we will write ðX; f Þ, this will simply correspond to the action of f on X.

56 D. Faranda et al. / Chaos, Solitons & Fractals 74 (2015) 55–66



Download English Version:

https://daneshyari.com/en/article/1892631

Download Persian Version:

https://daneshyari.com/article/1892631

Daneshyari.com

https://daneshyari.com/en/article/1892631
https://daneshyari.com/article/1892631
https://daneshyari.com

