Higher order generalized Euler characteristics and generating series

S.M. Gusein-Zade ${ }^{\text {a }}$, I. Luengo ${ }^{\text {b,c }}$, A. Melle-Hernández ${ }^{\text {b,c,* }}$
${ }^{a}$ Moscow State University, Faculty of Mathematics and Mechanics, GSP-1, Moscow, 119991, Russia
${ }^{\text {b }}$ Complutense University of Madrid, Department of Algebra, Madrid, 28040, Spain
${ }^{\text {c }}$ ICMAT (CSIC-UAM-UC3M-UCM), Spain

ARTICLE INFO

Article history:

Received 1 April 2013
Accepted 27 April 2015
Available online 6 May 2015

MSC:

32M99
32Q55
55M35

Keywords:

Complex quasi-projective varieties
Finite group actions
Orbifold Euler characteristic
Wreath products
Generating series

Abstract

For a complex quasi-projective manifold with a finite group action, we define higher order generalized Euler characteristics with values in the Grothendieck ring of complex quasiprojective varieties extended by the rational powers of the class of the affine line. We compute the generating series of generalized Euler characteristics of a fixed order of the Cartesian products of the manifold with the wreath product actions on them.

© 2015 Elsevier B.V. All rights reserved.

Let X be a topological space (good enough, say, a quasi-projective variety) with an action of a finite group G. For a subgroup H of G, let $X^{H}=\{x \in X: H x=x\}$ be the fixed point set of H. The orbifold Euler characteristic $\chi^{o r b}(X, G)$ of the G-space X is defined, e.g., in [1,2]:

$$
\begin{equation*}
\chi^{\text {orb }}(X, G)=\frac{1}{|G|} \sum_{\substack{\left(g_{0}, g_{g}\right) \in G \times G: \\ g_{0} g_{1}=g_{1} g_{0}}} \chi\left(X^{\left\langle g_{0}, g_{1}\right\rangle}\right)=\sum_{[g] \in G_{*}} \chi\left(X^{\langle g\rangle} / C_{G}(g)\right), \tag{1}
\end{equation*}
$$

where G_{*} is the set of conjugacy classes of elements of $G, C_{G}(g)=\left\{h \in G: h^{-1} g h=g\right\}$ is the centralizer of g, and $\langle g\rangle$ and $\left\langle g_{0}, g_{1}\right\rangle$ are the subgroups generated by the corresponding elements.

The higher order Euler characteristics of (X, G) (alongside with some other generalizations) were defined in [3,4].

[^0]Definition. The Euler characteristic $\chi^{(k)}(X, G)$ of order k of the G-space X is

$$
\begin{equation*}
\chi^{(k)}(X, G)=\frac{1}{|G|} \sum_{\substack{g \in G^{k+1}: \\ g_{i} g_{j}=g_{j} g_{i}}} \chi\left(X^{\langle\mathbf{g}\rangle}\right)=\sum_{[g] \in G_{*}} \chi^{(k-1)}\left(X^{\langle g\rangle}, C_{G}(g)\right), \tag{2}
\end{equation*}
$$

where $\mathbf{g}=\left(g_{0}, g_{1}, \ldots, g_{k}\right),\langle\mathbf{g}\rangle$ is the subgroup generated by $g_{0}, g_{1}, \ldots, g_{k}$, and $\chi^{(0)}(X, G)$ is defined as $\chi(X / G)$.
The usual orbifold Euler characteristic $\chi^{\text {orb }}(X, G)$ is the Euler characteristic of order $1, \chi^{(1)}(X, G)$.
The higher order generalized Euler characteristics take values in the Grothendieck ring of complex quasi-projective varieties extended by the rational powers of the class of the affine line. Let $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ be the Grothendieck ring of complex quasi-projective varieties. This is the abelian group generated by the isomorphism classes [X] of quasi-projective varieties modulo the relation:

- if Y is a Zariski closed subvariety of X, then $[X]=[Y]+[X \backslash Y]$.

The multiplication in $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ is defined by the Cartesian product. The class [X] of a variety X is the universal additive invariant of quasi-projective varieties and can be regarded as a generalized Euler characteristic of X. Let \mathbb{L} be the class $\left[\mathbb{A}_{\mathbb{C}}^{1}\right]$ of the affine line and let $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)\left[\mathbb{L}^{1 / m}\right]$ be the extension of the Grothendieck ring $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ by all the rational powers of \mathbb{L}.

The formula for the generating series of the generalized orbifold Euler characteristics of the pairs (X^{n}, G_{n}) in [5] uses the (natural) power structure over the Grothendieck ring $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ (and over $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)\left[\mathbb{L}^{1 / m}\right]$) defined in [6]. (See also [7] and [5] for some generalizations of this concept.) This means that for a power series $A(T) \in 1+t \cdot R[[t]]\left(R=K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)\right.$ or $\left.K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)\left[\mathbb{L}^{1 / m}\right]\right)$ and for an element $m \in R$ there is defined a series $(A(T))^{m} \in 1+t \cdot R[[t]]$ so that all the properties of the exponential function hold. For a quasi-projective variety M, the series $(1-t)^{-[M]}$ is the Kapranov zeta-function of M : $\zeta_{[M]}(t):=(1-t)^{-[M]}=1+[M] \cdot t+\left[\operatorname{Sym}^{2} M\right] \cdot t^{2}+\left[\operatorname{Sym}^{3} M\right] \cdot t^{3}+\cdots$, where $\operatorname{Sym}^{k} M=M^{k} / S_{k}$ is the k th symmetric power of the variety M. A geometric description of the power structure over the Grothendieck ring $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ is given in [6] or [5]. The (natural) power structures over $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ and over $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)\left[\mathbb{L}^{1 / m}\right]$ possess the following properties:
(1) $\left(A\left(t^{s}\right)\right)^{m}=\left.(A(t))^{m}\right|_{t \mapsto t^{s}}$;
(2) $\left(A\left(\mathbb{L}^{s} t\right)\right)^{m}=(A(t))^{\mathbb{L}^{s} m}$.

One can define a power structure over the ring $\mathbb{Z}\left[u_{1}, \ldots, u_{r}\right]$ of polynomials in r variables with integer coefficients
 $\underline{u}^{\underline{\underline{k}}}=u_{1}^{k_{1}} \cdot \ldots \cdot u_{r}^{k_{r}}, p_{\underline{k}} \in \mathbb{Z}$. Define

$$
(1-t)^{-P\left(u_{1}, \ldots, u_{r}\right)}:=\prod_{\underline{k} \in \mathbb{Z}_{\geq 0}^{r}}\left(1-\underline{u}^{\underline{k}} t\right)^{-p_{\underline{k}}}
$$

where the power (with an integer exponent $-p_{\underline{k}}$) means the usual one. This gives a λ-structure on the ring $\mathbb{Z}\left[u_{1}, \ldots, u_{r}\right]$ and therefore a power structure over it (see, e.g., [5, Proposition 1])
i.e., for polynomials $A_{i}(\underline{u}), i \geq 1$, and $M(\underline{u})$, there is defined a series $\left(1+A_{1}(\underline{u}) t+A_{2}(\underline{u}) t^{2}+\cdots\right)^{M(\underline{u})}$ with the coefficients from $\mathbb{Z}\left[u_{1}, \ldots, u_{r}\right]$.

Let $r=2, u_{1}=u, u_{2}=v$. Let $e: K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) \rightarrow \mathbb{Z}[u, v]$ be the ring homomorphism which sends the class $[X]$ of a quasi-projective variety X to its Hodge-Deligne polynomial $e(X ; u, v)=\sum h_{X}^{i j}(-u)^{i}(-v)^{j}$.

Remark. Let R_{1} and R_{2} be rings with power structures over them. A ring homomorphism $\varphi: R_{1} \rightarrow R_{2}$ induces the natural homomorphism $R_{1}[[t]] \rightarrow R_{2}[[t]]$ (also denoted φ) by $\varphi\left(\sum a_{i} t^{i}\right)=\sum \varphi\left(a_{i}\right) t^{i}$. In [5, Proposition 2], it was shown that if a ring homomorphism $\varphi: R_{1} \rightarrow R_{2}$ is such that $(1-t)^{-\varphi(m)}=\varphi\left((1-t)^{-m}\right)$ for any $m \in R$, then $\varphi\left((A(t))^{m}\right)=(\varphi(A(t)))^{\varphi(m)}$ for $A(t) \in 1+t R[[t]], m \in R$.

There are two natural homomorphisms from the Grothendieck ring $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ to the ring \mathbb{Z} of integers and to the ring $\mathbb{Z}[u, v]$ of polynomials in two variables: the Euler characteristic (with compact support) $\chi: K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right) \rightarrow \mathbb{Z}$ and the Hodge-Deligne polynomial. Both possess the following well known identities:
(1) the formula of I.G. Macdonald [8]:

$$
\chi\left(1+[X] t+\left[\operatorname{Sym}^{2} X\right] t^{2}+\left[\operatorname{Sym}^{3} X\right] t^{3}+\cdots\right)=(1-t)^{-\chi(X)},
$$

(2) and the corresponding formula for the Hodge-Deligne polynomial (see [9, Proposition 1.2]):

$$
e\left(1+[X] t+\left[\operatorname{Sym}^{2} X\right] t^{2}+\cdots\right)=(1-T)^{-e(X ; u, v)}=\prod_{p, q}\left(\frac{1}{1-u^{p} v^{q} t}\right)^{e^{p, q}(X)}
$$

These properties and the previous remark imply that the corresponding homomorphisms respect the power structures over the corresponding rings: $K_{0}\left(\operatorname{Var}_{\mathbb{C}}\right)$ and $\mathbb{Z}[u, v]$ respectively, see [7].

https://daneshyari.com/en/article/1892647

Download Persian Version:

https://daneshyari.com/article/1892647

Daneshyari.com

[^0]: * Correspondence to: Faculty of Mathematical Sciences, Department of Algebra, Complutense University of Madrid, Madrid, 28040, Spain.

 E-mail addresses: sabir@mccme.ru (S.M. Gusein-Zade), iluengo@mat.ucm.es (I. Luengo), amelle@mat.ucm.es (A. Melle-Hernández).

