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a b s t r a c t

Thermalization is one of the most important phenomena in statistical physics. Often, the
transition probabilities between different states in the phase space is or can be approxi-
mated by constants. In this case, the system can be described by Markovian transition ker-
nels, and when the phase space is discrete, by Markov chains. In this paper, we introduce a
macroscopic entropy on the states of paths of length k and, studying the recursion relation,
obtain a fixed point entropy. This analysis leads to a centrality approach to Markov chains
entropy.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Physical systems require very often different descrip-
tions at the micro and macro scale. It is the case for
instance in systems which exhibit emergent phenomena,
and for systems which undergo a phase transition. In this
case, one could argue that the degrees of freedoms change
with the scale effectively, and thus phase space counting
should be different depending on the lens with which
one look at the system. This line of thinking has been very
fruitful in the last century, since the very initial work of
Gell-Man and Low on the renormalization group. The
concept of emergence, in particular, has enlighted many
physical phenomena, giving them in the first place a
renewed appeal from the new interpretation. With this
same line of reasoning, dynamical systems can often exhi-
bit correlations which are not only time dependent, but
that at short time scales with respect to thermalization
typical time scale, exhibit different behaviors.

The introduction of a macroscopic entropy functional
for statistical systems has been introduced by Lloyd and
Pagels in [1], and at the same time by Lindgren [2]. Lloyd

and Pagels showed that the depth of a Hamiltonian system
is proportional to the difference between the system and
the coarse grained entropy. This paper introduced the con-
cept of ‘‘thermodynamic depth’’. If pi is the probability that
a certain system arrived at a macroscopic state i, then the
thermodynamic depth of that state is proportional to
lnðpiÞ. This implies that the average depth of a system,
the complexity, is proportional to the Shannon entropy,
or the Boltzmann entropy. In addition, it has been shown
in [1] that the only functional that is continuous, monoton-
ically increasing with system size, and is extensive is the
Boltzmann functional up to a constant [3]. One can show
that such argument is true also for macroscopic states,
described by trajectories i1 ! i2 ! i3 � � � ! in. In this case,
the thermodynamic depth of this state is given by
�a log pði1; i2; i3; � � � jinÞ. In general, the average depth of a
system with many macroscopic states can be very large.
In fact, it has been shown in [2] that the macroscopic
entropy defined by:

Sm ¼
X

i1 i2 ...im

� pmði1i2 . . . imÞ logðpmði1i2 . . . imÞÞ ð1Þ

is monotonically increasing, i.e. DSm ¼ Sm � Sm�1 P 0, and
DSm � dSm�1 6 0. It has been also shown that, if the macro-
state is described by a string of length L, one can obtain a
finite specific thermodynamic depth,
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lðvÞ ¼ lim
m!1

Sm

m
;

with v being the infinite string. The idea of thermody-
namic depth has inspired Ekroot and Cover to introduce
the entropy of Markov trajectories in [4]. If Pi denote the
ith row of a Markov transition matrix, one can define the
entropy of a state i as:

HðPiÞ ¼ �
X

j

Mij logðMijÞ ð2Þ

with Mij being the Markov operator. If one introduces the
probability of a trajectory going from i to j as pij, then,
the macroscopic entropy of the Markov trajectory is given
by:

Hij ¼ �
X

j

PðtijÞ logðPðtijÞÞ: ð3Þ

For Markov chains, one has that pij ¼
P

k1 ;k2 ;...;kn
Mik1 . . . Mknj,

which thus leads to a recurrence relation:

Hij ¼ HðPiÞ þ
X
k–j

PijHkj; ð4Þ

which follows from the chain rule of the entropy, and
allows to calculate a closed formula for Hij in terms of
the entropy of the nodes, that we will call 1Si, and the
asymptotic, stationary distribution of the Markov chain, p.

Over the last decade, a huge effort has been devoted to
understanding processes on networks [5], understanding
their statistical properties, as interactions very often occur
on nontrivial network topologies, as for instance scale free
or small world networks, called complex networks. With
this widespread interest in networks, the study of global
properties of graphs and graph ensembles has given a
renewed impetuous to the study of entropies on graphs.
In general, in analogy with what happens for Markov
chains, one is interested in quantifying their complexity
by means of information theory approach. Since for
strongly connected graphs, the transition kernel, given by
M ¼ D�1A, with A being the adjacency matrix of the graph
and D being the diagonal matrix of degree with Dii ¼

P
jAij.

If M is an ergodic operator (which depends on the topolog-
ical properties of the underlying graph), one can study
operators based on the asymptotic properties of a random
walk.

The dynamics and the structure of many physical net-
works, such as those involved in biological, physical, eco-
nomical and technological systems, is often characterized
by the topology of the network itself.

In order to quantify the complexity of a network, sev-
eral measures of complexity of a network have been intro-
duced, as for instance in [6], studying the entropy associate
to a certain partitioning of a network. The standard
Boltzmann entropy per node was defined as the transition
kernel of a random walk in [7]. In general, in complex
networks, one is interested in the average complexity of
an ensemble of networks of the same type, as for instance
Erdòs–Renyi or Watts–Strogats and Barabási–Albert ran-
dom graphs. Along these lines in particular, we mention
the entropy based on the transition kernel of Anand and
Bianconi [8]. One can in fact write the partition function

of a network ensemble subject to a micro-canonical con-
straint (the energy) and then, given the probability of cer-
tain microcanonical ensemble, calculate its entropy,
similarly to what proposed in [9] for random graphs.

In general, an entropy of a complex network can be
associated from a test particle performing a diffusion pro-
cess on the network, as in [10]; for scale free networks, it is
found that the entropy production rate depends on the tail
of the distribution of nodes, and thus on the exponent of
the tail.

Along these lines, in [11] a von Neumann entropy based
on the graph Laplacian has been introduced, merging
results inspired from pure states in Quantum Mechanics,
and networks, and finding that the von Neumann entropy
is related to the spectrum of the Laplacian [8]. In particular,
it has been shown that many graph properties can be iden-
tified using this Laplacian approach.

In general, these approaches rely on a local operator
(transition kernels, Laplacians) with support on the graph.
Therefore, if one is interested in knowing macroscopic
properties of the graph, is indeed forced to use non-local
operators. In addition to the theoretical interest of describ-
ing the macroscopic properties of a graph in terms of infor-
mation theory quantities, it is important to remark that
very often these have important applications in classifying
systems according to their topological properties. For
instance, in [12] it has been shown that graph entropy
can be used to differentiate and identify cancerogenic cells.
In particular, [12] shows the importance of studying entro-
pies based on the non-local (macroscopic) properties of a
network, as for instance the higher-order network entropy
given by

SðnÞ ¼ �
X

j

KðnÞij log KðnÞij

� �
; ð5Þ

with KðnÞij satisfying an approximate diffusion equation at
nth order,

KðnÞij � eM þ OðMnÞ:

In addition to the approaches just described, one could
think of using, instead of the diffusion kernel above, a
node-entropy based on diffusion as Si ¼

P
jM

k
ijlogðMk

ijÞ. It
is easy to see, however that for k!1, if the operator is
ergodic, the asymptotic entropy is independent from the
initial state: it easy a known fact that if M has a unique
Perron root, ðMkÞij � pðjÞ þ ðNkÞij, where N is a Nilpotent
operator such that limk!1Nk ¼ 0. The same happens for
the diffusion kernel at long times: in this case the diffusion
kernel approaches the asymptotic distribution, which
indeed has forgotten from which node the diffusion
started. With the aim of retaining the information on the
node, we introduce the entropy on the paths originating
at a node which, as we shall show, has very interesting
asymptotic properties for long walks. In the next section
we describe the construction of the non-local entropy,
and an application to random graphs and fractals. Conclu-
sions follow.
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