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a b s t r a c t

This work is devoted to application of the modified homogeneous balance method to
obtain generalized bilinear forms of some well-known soliton equations: the Korteweg
de Vries equation, the scalar Boussinesq equation and the Kaup–Boussinesq equations.
These bilinear forms are solved for new solutions using the perturbation method and the
principle of superposition.
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1. Introduction

The soliton equations play an important role particularly
in fluid mechanics and generally in mathematical physics.
The most well-known prototype of this class of equations
is the Korteweg–de Vries (KdV) equation [1]. This equation
was abandoned for a long time since it was not clear at the
time if a solitary wave could exist and how it should appear.
Only until the seventies of the last century, the KdV equa-
tion attracted attention of physicists and mathematicians
due to the exact integration for soliton solution by the Hiro-
ta’s bilinear method [2] and almost the same time by the
inverse scattering transform [3]. The name soliton is coined
to reflect the particle-like behavior of such solutions, and
henceforth the suffix -on follows. Both methods were sub-
sequently and successfully applied to other soliton equa-
tions such as the modified Korteweg–de Vries equation [4]
and the sine–Gordon equation [5,6]. The latter finds its
application in different branches of physics [7,8]. For impor-
tance of these equations, the respective modulation theo-
ries, which provide an asymptotic mathematical tool,
were developed in [9–11] using the variational asymptotic
procedure whose theory can be found in [12,13]. Since the
discovery of exact solutions of KdV equation, a quest for
exact solutions of other equations of the same class has

arisen. Several approaches to nonlinear wave equations
have been recently proposed, for example homogeneous
balance method [14–17], F-expansion method [18], tanh
method [19], variational iteration method [20–22], exp-
function method [23,24], sin-cosine function method
[25,26], and so forth. All fore-mentioned methods possess
simultaneously advantages and disadvantages towards var-
ious particular equations. They help to find the solutions in
a direct way, but at the same time, do not provide a system-
atic procedure to obtain solutions of higher order like Hiro-
ta’s bilinear method. Recently, Liu found that there is a link
between the bilinear form and the homogeneous balance
method. This remarkable finding led him to the modified
homogeneous balance method whose steps are adequately
described in [17]. Nevertheless, the bilinear forms found in
there can be still generalized and so can their corresponding
solutions. In this paper, we present an application of modi-
fied homogeneous balance method to seek for the general-
ized bilinear forms of two soliton equations and one system
of equations followed in the list.

� Korteweg de Vries equation,
� Scalar Boussinesq equation,
� Kaup–Boussinesq equations.

A crucial test of soundness of these forms is to find their
exact solutions. Beyond these results, we present a few
new interesting solutions of the obtained equations.
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2. Korteweg–de Vries equation

2.1. Derivation of bilinear form

Due to the significantly historical importance, we start
first with a well-known prototype of soliton equation,
KdV equation

ut þ 6uux þ uxxx ¼ 0: ð1Þ

Following [2], we propose the solution Ansatz

uðx; tÞ ¼ uðhðx; tÞÞxx þ a; uðhÞ ¼ 2 log h: ð2Þ

Substituting this Ansatz into Eq. (1), we obtain

Ahxuhhh þ Cuhh þ Bxuh ¼ 0; ð3Þ

where the coefficients depending on function h are given
by

A ¼ 6ah2
x þ hthx þ 4hxhxxx � 3h2

xx;

B ¼ 6ahxx þ hxt þ hxxxx;

C ¼ 18ahxhxx � 2hxxhxxx þ 5hxhxxxx þ 2hxhxt þ hthxx:

It can be proved that C ¼ Ax þ Bhx so that (3) is rewritten in
the form

AhxuhhhþAxuhhþBhxuhhþBxuh¼0 or ðAuhhþBuhÞx¼0:

An integration of this equation yields

Auhh þ Buh ¼ qðtÞ;

where qðtÞ is a function depending only on time variable.
Using (2)2, this equation can be given in a more explicit
form

Bh�A¼6aðhhxx�h2
x Þþhxth�hxhtþhhxxxx�4hxhxxxþ3h2

xx ¼ h2 qðtÞ
2
;

which is engendered in a more elegant form by using the
Hirota’s bilinear differential operator1

DxðDt þ 6aDx þ D3
x Þh � h ¼ h2qðtÞ: ð4Þ

2.2. Solution of the bilinear form equation

In special case q ¼ 0, the bilinear form (4) can be solved
for n-soliton by following the perturbation method [27].
Since the procedure of finding n-soliton solution based on
bilinear form is standardized, we suppress here the rigorous
verification, which might be nothing else but repetition of
works presented in [2,4,5], and provide only the final result

uðx;tÞ ¼2
hhxx�h2

x

h2 þa;

h¼1þ
XN

n¼1

X
Cn

N

YðnÞ
k<l

cðik; ilÞ
" #

expðgi1
þ�� �þgin Þ;

gi ¼ kixþxitþdi; xi ¼�6aki�k3
i ;

cði; jÞ ¼�
ðki�kjÞ xi�xjþ6aðki�kjÞþðki�kjÞ3

h i
ðkiþkjÞ xiþxjþ6aðkiþkjÞþðkiþkjÞ3

h i¼ðki�kjÞ2

ðkiþkjÞ2
:

In this solution formula, Cn
N indicates all possible combina-

tion of n elements from the set of N elements

XN ¼ fj 2 N;1 6 j 6 Ng;

and
QðnÞ

k<l is the product of all possible combinations of
these taken n elements. Note that the solution provided
here is different from what we have known due to the
appearance of an arbitrary constant a.

Discussion. It is interesting that the n-soliton solution
provided above gives more flexibility in determining the
velocity of each soliton which is characterized by

ci ¼ �xi=ki ¼ 6aþ k2
i :

Thus, one soliton propagates to the left if 6aþ k2
i < 0, to

the right if 6aþ k2
i > 0, and stands still otherwise. To

illustrate this argument, we pick up a 3-soliton solution
generated with the following parameters: k1 ¼ 1;
k2 ¼ 2; k3 ¼ 3; a ¼ �2=3. Accordingly, the velocities of
three respective solitons are c1 ¼ �3; c2 ¼ 0; c3 ¼ 5, so
two of them propagate in opposite directions whereas
the other does not propagate at all. In Fig. 1, such exact
solution is plotted at three different time instants to make
the explanation realizable.

3. Scalar Boussinesq equation

3.1. Derivation of bilinear form

We consider now the scalar Boussinesq equation

utt þ ðu2Þxx þ uxxxx ¼ 0: ð5Þ
Following [28], we derive the bilinear form of this equation
using the Ansatz

uðx; tÞ ¼ uðhðx; tÞÞxx þ a; uðhÞ ¼ 6 log h: ð6Þ

Substituting this Ansatz into Eq. (5), it is expanded to

Ah2
xu
ð4Þ
h þ Cuhhh þ Duhh þ Bxxuh ¼ 0; ð7Þ

where the coefficients of derivatives of u are given by

A ¼ h2
t þ 2ah2

x � 3h2
xx þ 4hxhxxx;

C ¼ h2
xhtt þ 4hthxhxt þ h2

t hxx þ 12ah2
xhxx � 3h3

xx þ 9h2
xhxxxx;

D ¼ 2h2
xt þ htthxx þ 6ah2

xx þ 2hthxxt þ 2hxhxtt þ 3hxxhxxxx

þ 8ahxhxxx þ 6hxhxxxxx � 2h2
xxx;

B ¼ htt þ 2ahxx þ hxxxx:

Direct calculation shows that

C ¼ Ahxx þ 2Axhx þ Bh2
x ; D ¼ Axx þ 2Bxhx þ Bhxx:

Introducing a new dependent variable w ¼ uh, substituting
the above relations into (7) and applying the chain rule of
differentiation, we find that (7) can be transformed to

ðAwh þ BwÞxx ¼ 0:

Integrating this equation with respect to x twice, and using
the definition w ¼ 6=h, it is explicitly written in the form

hhtt � h2
t þ 2aðhhxx � h2

x Þ þ hhxxxx � 4hxhxxx þ 3h2
xx

¼ 1
2

h2ðpðtÞxþ qðtÞÞ:1 In this work, we adopt the denotation of the bilinear differential
operator defined by Hirota in [27].
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