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a b s t r a c t

The existence of infinitely many subharmonic solutions is obtained for a class of nonauton-
omous second order Hamiltonian systems with a new superquadratic condition.
Furthermore, we can get the existence of homoclinic solutions as the limit of subharmonics
under a stronger superquadratic condition which is still weaker than the growth conditions
in the references.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In this paper, we consider the existence of subharmonic
and homoclinic solutions for the following second order
Hamiltonian systems

€uðtÞ � LðtÞuðtÞ þ rWðt;uðtÞÞ ¼ 0; 8t 2 R; ð1Þ

where W 2 C1ðR� RN;RÞ and L is a continuous T-periodic
matrix valued function for all t 2 ½0; T�. A kT-periodic solu-
tion of problem (1) for some positive integer k is called to
be subharmonic. Furthermore, a solution uðtÞ of problem
(1) is homoclinic (to 0) if uðtÞ ! 0 and _uðtÞ ! 0 as
t ! �1. Moreover, if uðtÞ – 0;uðtÞ is called a nontrivial
homoclinic solution. Here and subsequently, rWðt; xÞ
denotes the gradient with respect to the x variable, and
ð�; �Þ : RN � RN ! R denotes the standard inner product in
RN , moreover, j � j is the induced norm.

The homoclinic orbits are important in study of the
behavior of dynamical systems which have been
researched since Poincaré. In last decades, the existence
and multiplicity of homoclinic orbits have been intensively
studied by many mathematicians with variational
methods [1–24,26–31,35–37] and the reference therein.

In 1990, Rabinowitz in [17] obtained the following
theorem:

Theorem A (See [17]). Suppose that W is T-periodic in t
satisfying

ðA1Þ there exists a constant h > 2 such that

0 < hWðt; xÞ 6 ðrWðt; xÞ; xÞ

for every t 2 R and x 2 RN n f0g;

ðA2Þ rWðt; xÞ ¼ oðjxjÞ as jxj ! 0 uniformly for t 2 R.
ðA3Þ L is a positive definite symmetric matrix valued

function.

Then problem (1) possesses a nontrivial homoclinic
solution.

In [17], the author proved the existence of at least one
nontrivial homoclinic solutions for problem (1) as the limit
of the subharmonic solutions which are obtained by the
Mountain Pass Theorem.

With the similar method, Izydorek and Janczewska in
[10], Tang and Xiao in [23] generalized Theorem A by
replacing LðtÞuðtÞ with a general form. But in both of these
two papers, the authors needed the growth condition ðA1Þ
which plays an important role in the proof. This condition
is well known as the global Ambrosetti–Rabinowitz
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condition which can help prove the compact condition. In
recent years, there are many papers [7,8,28,30,31,35]
obtained the existence and multiplicity of homoclinic solu-
tions of problem (1) with some other superquadratic con-
ditions on W instead of ðA1Þ. Subsequently, we set

fW ðt; xÞ ¼ ðrWðt; xÞ; xÞ � 2Wðt; xÞ:

In 2008, Ding and Lee [7] considered system (1) with W
satisfying the following conditions

ðW0Þ W 2 C2ðR� RN;RÞ andrWðt;0Þ ¼ 0 andr2Wðt;0Þ ¼
0 for all t 2 R.

ðW1Þ Wðt;0Þ ¼ 0 for all t 2 R.

ðW2Þ fW ðt; xÞ > 0 for all t 2 R; x 2 RN n f0g.
ðW3Þ there exist s 2 ð0;1Þ and R1; a0 > 0 such that

fW ðt; xÞP a0
ðrWðt; xÞ; xÞ
jxj2�s for all t 2 R and

jxjP R1:

ðW4Þ Wðt; xÞ=jxj2 ! þ1 as jxj ! 1 uniformly in t 2 R.
We can deduce from ðW2Þ; ðW3Þ and ðW4Þ that.

ðW5Þ
eW ðt;xÞ
Wðt;xÞ jxj

2 ! þ1 as jxj ! 1 uniformly in t 2 R.

Moreover, we can see that condition ðW5Þ implies
that.

ðW6Þ there are constants a1; r1 > 0 such that

fW ðt; xÞP a1
Wðt; xÞ
jxj2

forall t 2 R and jxjP r1:

Condition ðW6Þ is introduced by Tang and Wu [25] to
obtain the existence of periodic solutions for problem (1)
with some other conditions.

When L and W are neither autonomous nor periodic in t,
the situation is more complicated since the lack of com-
pactness of the Sobolev embedding. In order to get the
compactness back, we usually need some different condi-
tions on L and there are many papers concerning on topic,
which will not be discussed more since in this paper, we
only consider the case when L is periodic in t.

In this paper, we get the existence of subharmonic
solution for problem (1) by using the Mountain Pass Theo-
rem under condition ðW6Þ. With the stronger condition
ðW5Þ, we prove that the subharmonic solutions converge
to a nontrivial homoclinic solution by some uniform
estimates. First of all, we state our existence result of
subharmonic solutions for problem (1).

Theorem 1.1. Suppose that W and L are T-periodic with
respect to t; T > 0 satisfying ðA2Þ; ðA3Þ; ðW1Þ; ðW4Þ; ðW6Þ and
the following condition

ðW0
2Þ fW ðt; xÞP 0 for all t 2 R and x 2 RN .

Then there exists a sequence fkig � N, ki !1, and corre-
sponding distinct 2kiT periodic solutions of problem (1).

Remark 1. The conditions of Theorem 1.1 are different
from the results in the references. For example, let

Wðt;xÞ¼ q1jxj
6þq2jxj

4 for jxj6
ffiffiffiffiffiffiffi
3p
p

jxj2 lnð1þjxj2Þþsin jxj2� ln2ð1þjxj2Þ for jxjP
ffiffiffiffiffiffiffi
3p
p

;

(
ð2Þ

where

q1 ¼ð3pÞ�3 2ln2ð1þ3pÞ�3p lnð1þ3pÞ�3pþ6p lnð1þ3pÞ
1þ3p

� �
;

q2 ¼ð3pÞ�2 6p lnð1þ3pÞ�3ln2ð1þ3pÞþ3pþ6p lnð1þ3pÞ
1þ3p

� �
:

Then we have

lim inf
jxj!1

ðrWðt; xÞ; xÞ � 2Wðt; xÞ
jxjp

¼ 0 ð3Þ

for any p > 0. We can see that (2) satisfies the conditions of
Theorem 1.1 but not the results in [26,32–34].

If we replace the condition ðW6Þ by the stronger
condition ðW5Þ, we can get the existence of at least one
homoclinic orbit for problem (1) which is the following
theorem.

Theorem 1.2. Suppose that W and L are T-periodic with
respect to t; T > 0 satisfying ðA2Þ; ðA3Þ; ðW1Þ; ðW2Þ; ðW4Þ,
ðW5Þ. Then problem (1) possesses at least one nontrivial

homoclinic solution u 2W1;2ðR;RNÞ.

Remark 2. It is easy to see that ðW2Þ, ðW3Þ and ðW4Þ can
imply ðW5Þ which can also be obtained by ðA1Þ. Further-
more, condition ðA2Þ can be deduced by ðW0Þ and ðW1Þ.
Then Theorem 1.2 generalizes Theorem A and Theorem 1.2
in [7]. And we can set the following example

Wðt;xÞ

¼
b1jxj6þb2jxj8 for jxj �8

ffiffiffiffi
p
p

jxj2ln
3
2ð1þjxj

4
3Þþ ln

1
2ð1þjxj

4
3Þcos jxj2� ln2ð1þjxj

4
3Þ for jxjP 8

ffiffiffiffi
p
p

;

(
ð4Þ

where b1 ¼ 4ð8
ffiffiffiffi
p
p
Þ�6ð#1 �

ffiffiffiffi
p
p

#2Þ, b2 ¼ 2�1ð8
ffiffiffiffi
p
p
Þ�8ð8

ffiffiffiffi
p
p

#2

�6#1Þ with #1 ¼ 64pA
3
2
1 þ A

1
2
1 � A2

1, #2 ¼ 16
ffiffiffiffi
p
p

A
3
2
1 þ 96pA

1
2
1A2

þ 1
2 A
�1

2
1 A2 � 2A1A2 and A1 ¼ lnð1þ 16p2

3Þ, A2 ¼
8
3p

1
6

1þ16p
2
3
. It is

easy to see that (4) satisfies the conditions of Theorem 1.2,
but not the results in [8,13,21,27–31] since (4) satisfies (3).

2. Proof of Theorem 1.1

For each k 2 N, let Ek ¼W1;2
2kTðR;R

NÞ be the Hilbert space
of 2kT periodic functions under the following norm

kukEk
:¼

Z kT

�kT
j _uðtÞj2dt þ

Z kT

�kT
ðLðtÞuðtÞ;uðtÞÞdt

 !1=2

: ð5Þ

Set

Lp
2kTðR;R

NÞ ¼ u : ½�kT; kT� ! RNjkukLp
2kT
ðR;RN Þ <1

n o
;

where
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