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a b s t r a c t

In this paper, we explore dynamics of the nonholonomic system called vakonomic mechan-
ics in the context of Lagrange–Dirac dynamical systems using a Dirac structure and its
associated Hamilton–Pontryagin variational principle. We first show the link between
vakonomic mechanics and nonholonomic mechanics from the viewpoints of Dirac struc-
tures as well as Lagrangian submanifolds. Namely, we clarify that Lagrangian submani-
fold theory cannot represent nonholonomicmechanics properly, but vakonomicmechanics
instead. Second, in order to represent vakonomic mechanics, we employ the space TQ ×

V ∗, where a vakonomic Lagrangian is defined from a given Lagrangian (possibly degen-
erate) subject to nonholonomic constraints. Then, we show how implicit vakonomic Eu-
ler–Lagrange equations can be formulated by the Hamilton–Pontryagin variational principle
for the vakonomic Lagrangian on the extended Pontryagin bundle (TQ ⊕ T ∗Q )× V ∗. Asso-
ciated with this variational principle, we establish a Dirac structure on (TQ ⊕ T ∗Q )×V ∗ in
order to define an intrinsic vakonomic Lagrange–Dirac system. Furthermore, we also estab-
lish another construction for the vakonomic Lagrange–Dirac system using a Dirac structure
on T ∗Q × V ∗, where we introduce a vakonomic Dirac differential. Finally, we illustrate our
theory of vakonomic Lagrange–Dirac systems by some examples such as the vakonomic
skate and the vertical rolling coin.

© 2015 Published by Elsevier B.V.

1. Introduction

Some backgrounds. In conjunction with optimal control design, much effort has been concentrated upon exploring
geometric structures and variational principles of constrained systems (see, for instance, [1–6]). The motion of such
constrained systemsmay be subject to a nontrivial distribution on a configuration manifold. For the case in which the given
distribution is integrable in the sense of Frobenius theorem, the constraint is called holonomic, otherwise nonholonomic. It
is well known that equations ofmotion for Lagrangian systemswith holonomic constraints can be formulated by Hamilton’s
variational principle by incorporating holonomic constraints into an original Lagrangian through Lagrange multipliers. On
the other hand, Hamilton’s variational principle does not yield correct equations of motion for mechanical systems with
nonholonomic constraints, but induces different mechanics instead. The correct equations of motion for nonholonomic
mechanics can be developed from the Lagrange–d’Alembert principle. In other words, there are two different mechanics
associated with systems with nonholonomic constraints. The first one is based on the Lagrange–d’Alembert principle and
the corresponding equations of motion are called nonholonomic mechanics. The second one is called vakonomic mechanics

∗ Corresponding author.
E-mail addresses: fjimenez@ma.tum.es (F. Jiménez), yoshimura@waseda.jp (H. Yoshimura).

http://dx.doi.org/10.1016/j.geomphys.2014.11.002
0393-0440/© 2015 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.geomphys.2014.11.002
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2014.11.002&domain=pdf
mailto:fjimenez@ma.tum.es
mailto:yoshimura@waseda.jp
http://dx.doi.org/10.1016/j.geomphys.2014.11.002


F. Jiménez, H. Yoshimura / Journal of Geometry and Physics 94 (2015) 158–178 159

(mechanics of variational axiomatic kind), which is purely variational and was developed by Kozlov [7]; the name of
vakonomic mechanics was coined by Arnold [2]. Needless to say, both approaches are essentially different from the other:
interesting comparisons between both of them can be found in [8,9].

Nonholonomicmechanics has been studied from the viewpoints of Hamiltonian, Lagrangian as well as Poisson dynamics
(see [10]). Indeed, nonholonomic mechanics has many applications to engineering, robotics, control of satellites, etc., since
it seems to be appropriate to model the dynamical behavior of phenomena such as rolling rigid-body, etc. (see [11]). On
the other hand, vakonomic mechanics appears in some problems of optimal control theory (related to sub-Riemannian
geometry) [12,13], economic growth theory [14], motion of microorganisms at low Reynolds number [15], etc. A geometric
unified approach was developed in [16].

In mechanics, one usually starts with a configuration manifold Q ; Lagrangian mechanics deals with the tangent bundle
TQ , while Hamiltonianmechanicswith the cotangent bundle T ∗Q . It is known that nonholonomic and vakonomicmechanics
can be described on extended spaces because of the presence of Lagrange multipliers. An interesting geometric approach to
Lagrangian vakonomic mechanics on TQ ×Rm may be found in [17], while an approach on T (Q ×Rm)may be found in [18].
In particular, since an extended Lagrangian on TQ ×Rm or T (Q ×Rm) is clearly degenerate, we have to explore its dynamics
by using Dirac’s theory of constraints (see [19]). Another interesting approachmay be found in [9], where the authors depart
from TQ ⊕ T ∗Q , and its submanifold W0 = ∆Q ×Q T ∗Q , where ∆Q ⊂ TQ , in order to develop an intrinsic description of
vakonomic mechanics.

As shown in [20], degenerate Lagrangian systems with nonholonomic constraints may be described, in general, by a set
of implicit differential–algebraic equations, where a key point in the formulation of such implicit systems is to make use of
the Pontryagin bundle TQ ⊕ T ∗Q , namely the fiber product (or Whitney) bundle TQ ⊕ T ∗Q . To the best of our knowledge,
the Pontryagin bundle was first investigated in [21] to aid in the study of the degenerate Lagrangian systems, which is
the case that we also treat in the present paper. The iterated tangent and cotangent spaces TT ∗Q , T ∗TQ , and T ∗T ∗Q and
the relationships among these spaces were investigated by Tulczyjew [22] in conjunction with the generalized Legendre
transform, where a symplectic diffeomorphism κQ : TT ∗Q → T ∗TQ plays an essential role in understanding Lagrangian
systems in the context of Lagrangian submanifolds. The relation between these iterated spaces and the Pontryagin bundle
was also discussed in [23]. Furthermore, Courant [24] investigated the iterated spaces TT ∗Q , T ∗TQ , and T ∗T ∗Q in conjunction
with the tangent Dirac structures.

The notion of Dirac structures was developed by Courant andWeinstein [25], Dorfman [26] as a unified structure of pre-
symplectic and Poisson structures, where the original aims of these authors were to formulate the dynamics of constrained
systems, including constraints induced fromdegenerate Lagrangians, as in [19,27], wherewe recall that Diracwas concerned
with degenerate Lagrangians, so that the image P ⊂ T ∗Q of the Legendre transformation, called the set of primary constraints
in the language of Dirac, need not be the whole space. The canonical Dirac structures can be given by the graph of the
bundlemap associatedwith the canonical symplectic structure or the graph of the bundlemap associatedwith the canonical
Poisson structure on the cotangent bundle, and hence it naturally provides a geometric setting for Hamiltonian mechanics.
It was already shown by Courant [28] that Hamiltonian systems can be formulated in the context of Dirac structures,
however, its application to electric circuits and mechanical systems with nonholonomic constraints was studied in detail
by van der Schaft and Maschke [29], where they called the associated Hamiltonian systems with Dirac structures implicit
Hamiltonian systems. On the other hand, Yoshimura and Marsden [20] explored on the Lagrangian side to clarify the link
between an induced Dirac structure on T ∗Q and a degenerate Lagrangian system with nonholonomic constraints and they
developed a notion of implicit Lagrangian systems as a Lagrangian analogue of implicit Hamiltonian systems. Moreover, the
associated variational structure with implicit Lagrangian systems was investigated in [30], where it was shown that the
Hamilton–Pontryagin principle provides the standard implicit Lagrangian system. Another recent development that may be
relevant with the Dirac theory of constraints was explored by Cendra, Etchechouryb and Ferraro [31] by emphasizing the
duality between the Poisson-algebraic and the geometric points of view, related to Dirac’s and of Gotay and Nester’s work;
and by Grabowska and Grabowski [32] where the authors explored the Dirac setting regarding Lie algebroids.
Goals of the paper. The main purpose of this paper is to explore vakonomic mechanics, in the Lagrangian setting, both
in the context of the Dirac structure and its associated variational principle called the Hamilton–Pontryagin principle.
Another important point that we will clarify is the link between Dirac structures and Lagrangian submanifolds for the case
of vakonomic mechanics. The organization of the paper is given as follows.

In Section 2, we will briefly introduce the geometric setting of the iterated tangent and cotangent bundles as well as the
Pontryagin bundle. In Section 3, we will shortly review the Lagrangian submanifold theory for mechanics and then we will
show that nonholonomic mechanics cannot be formulated on Lagrangian submanifolds, since the pullback of a symplectic
two-form to the submanifold does not vanish. In Section 4 we will review Dirac structures in nonholonomic mechanics,
by using the induced Dirac structure on the cotangent bundle and we will show how a degenerate Lagrangian system can
be developed in the context of Dirac structures, together with the associated Lagrange–d’Alembert principle. In Section 5,
we will consider the extended tangent bundle TQ × V ∗, where an extended Lagrangian L, called vakonomic Lagrangian, is
defined in association with a given Lagrangian L on TQ and with nonholonomic constraints. Then we will show that the
vakonomic dynamics on (TQ ⊕ T ∗Q ) × V ∗ can be obtained by the Hamilton–Pontryagin principle for L, which yields the
implicit vakonomic Euler–Lagrange equations. In parallel with this variational setting, taking advantage of the presymplectic
structures constructed on (TQ ⊕ T ∗Q ) × V ∗, we will illustrate how the vakonomic analogue of the Lagrange–Dirac systems
can be intrinsically developed by making use of the Dirac structure on (TQ ⊕ T ∗Q ) × V ∗. We shall also show another
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