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a b s t r a c t

Complex networks appear in almost every aspect of science and technology. Previous work
in network theory has focused primarily on analyzing single networks that do not interact
with other networks, despite the fact that many real-world networks interact with and
depend on each other. Very recently an analytical framework for studying the percolation
properties of interacting networks has been introduced. Here we review the analytical
framework and the results for percolation laws for a Network Of Networks (NONs) formed
by n interdependent random networks. The percolation properties of a network of net-
works differ greatly from those of single isolated networks. In particular, because the con-
stituent networks of a NON are connected by node dependencies, a NON is subject to
cascading failure. When there is strong interdependent coupling between networks, the
percolation transition is discontinuous (first-order) phase transition, unlike the well-
known continuous second-order transition in single isolated networks. Moreover, although
networks with broader degree distributions, e.g., scale-free networks, are more robust
when analyzed as single networks, they become more vulnerable in a NON. We also review
the effect of space embedding on network vulnerability. It is shown that for spatially
embedded networks any finite fraction of dependency nodes will lead to abrupt transition.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The interdisciplinary field of network science has
attracted great attention in recent years [1–27]. This has
taken place because an enormous amount of data regarding
social, economic, engineering, and biological systems has
become available over the past two decades as a result of
the information and communication revolution brought
about by the rapid increase in computing power. The inves-
tigation and growing understanding of this extraordinary
amount of data will enable us to make the infrastructures

we use in everyday life more efficient and more robust.
The original model of networks, random graph theory,
developed in the 1960s by Erd}os and Rényi (ER), is based
on the assumption that every pair of nodes is randomly
connected with the same probability (leading to a Poisson
degree distribution). In parallel, lattice networks in which
each node has the same number of links have been used
in physics to model physical systems. While graph theory
was a well-established tool in the mathematics and com-
puter science literature, it could not adequately describe
modern, real-world networks. Indeed, the pioneering
observation by Barabási in 1999 [2], that many real net-
works do not follow the ER model but that organizational
principles naturally arise in most systems, led to an over-
whelming accumulation of supporting data, new models,
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and novel computational and analytical results, and led to
the emergence of a new and very active multidisciplinary
field: network science.

Significant advances in understanding the structure and
function of networks, and mathematical models of net-
works have been achieved in the past few years. These
are now widely used to describe a broad range of complex
systems, from techno-social systems to interactions
amongst proteins. A large number of new measures and
methods have been developed to characterize network
properties, including measures of node clustering, node
centrality, network modularity, correlation between
degrees of neighboring nodes, measures of node impor-
tance, and methods for the identification and extraction
of community structures. These measures demonstrated
that many real networks, and in particular biological net-
works, contain network motifs—small specific subnet-
works—that occur repeatedly and provide information
about functionality [9]. Dynamical processes, such as flow
and electrical transport in heterogeneous networks, were
shown to be significantly more efficient compared to ER
networks [28,29].

Complex networks are usually non-homogeneous
structures that exhibit a power-law form in their degree
(number of links per node) distribution. These systems
are called scale-free networks [30]. Some examples of
real-world scale-free networks include the Internet [3],
the WWW [4], social networks representing the relations
between individuals, infrastructure networks such as air-
lines [31,32], networks in biology, in particular networks
of protein–protein interactions [33], gene regulation, and
biochemical pathways, and networks in physics, such as
polymer networks or the potential energy landscape net-
work. The discovery of scale-free networks has led to a
re-evaluation of the basic properties of networks, such as
their robustness, which exhibit a character that differs
drastically from that of ER networks. For example, while
homogeneous ER networks are vulnerable to random fail-
ures, heterogeneous scale-free networks are extremely
robust [4,5]. Much of our current knowledge of networks
is based on ideas borrowed from statistical physics, e.g.,
percolation theory, fractal analysis, and scaling analysis.
An important property of these infrastructures is their sta-
bility, and it is thus important that we understand and
quantify their robustness in terms of node and link func-
tionality. Percolation theory was introduced to study net-
work stability and to predict the critical percolation
threshold [5]. The robustness of a network is usually (i)
characterized by the value of the critical threshold ana-
lyzed using percolation theory [34] or (ii) defined as the
integrated size of the largest connected cluster during the
entire attack process [35]. The percolation approach was
also extremely useful in addressing other scenarios, such
as efficient attacks or immunization [6,8,15,36,37], for
obtaining optimal path [38] as well as for designing robust
networks [35]. Network concepts were also useful in the
analysis and understanding of the spread of epidemics
[39,40], and the organizational laws of social interactions,
such as friendships [41,42] or scientific collaborations
[43]. Moreira et al. investigated topologically-biased fail-
ure in scale-free networks and controlled the robustness

or fragility by fine-tuning the topological bias during the
failure process [44].

Because current methods deal almost exclusively with
individual networks treated as isolated systems, many
challenges remain [45]. In most real-world systems an
individual network is one component within a much larger
complex multi-level network (a specific type of a network
of networks). As technology has advanced, coupling
between networks has become increasingly strong. Node
failures in one network will cause the failure of dependent
nodes in other networks, and vice versa [46]. This recursive
process can lead to a cascade of failures throughout the
network of networks system. The study of individual parti-
cles has enabled physicists to understand the properties of
a gas, but in order to understand and describe a liquid or a
solid the interactions between the particles also need to be
understood. So also in network theory, the study of iso-
lated single networks brings extremely limited results—
real-world noninteracting systems are extremely rare in
both classical physics and complex systems. Most real-
world network systems continuously interact with other
networks, especially since modern technology has acceler-
ated network interdependency.

To adequately model most real-world systems, under-
standing the interdependence of networks and the effect
of this interdependence on the structural and functional
behavior of the coupled system is crucial. Introducing cou-
pling between networks is analogous to the introduction of
interactions between particles in statistical physics, which
allowed physicists to understand the cooperative behavior
of such rich phenomena as phase transitions. Surprisingly,
preliminary results on mathematical models [46,47] show
that analyzing complex systems as a network of coupled
networks may alter the basic assumptions that network
theory has relied on for single networks. Here we will
review the main features of the theoretical framework of
Network of Networks, NON [48,49], and present some real
world applications.

2. Overview

In order to model interdependent networks, we con-
sider two networks, A and B, in which the functionality
of a node in network A is dependent upon the functionality
of one or more nodes in network B (see Fig. 1, and vice
versa: the functionality of a node in network B is depen-
dent upon the functionality of one or more nodes in net-
work A. The networks can be interconnected in several
ways. In the most general case we specify a number of
links that arbitrarily connect pairs of nodes across net-
works A and B. The direction of a link specifies the depen-
dency of the nodes it connects, i.e., link Ai ! Bj provides a
critical resource from node Ai to node Bj. If node Ai stops
functioning due to attack or failure, node Bj stops function-
ing as well but not vice versa. Analogously, link Bi ! Aj

provides a critical resource from node Bi to node Aj.
To study the robustness of interdependent networks

systems, we begin by removing a fraction 1� p of network
A nodes and all the A-edges connected to these nodes. As
an outcome, all the nodes in network B that are dependent
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