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The concept of betweenness has given rise to a very useful class of network centrality mea-
sures. Loosely, betweenness quantifies the level of importance of a node in terms of its pro-

pensity to act as an intermediary when messages are passed around the network. In this
work we generalize a walk-based betweenness measure to the case of time-dependent net-
works, such as those arising in telecommunications and on-line social media. We also
introduce a new kind of betweenness measure, temporal betweenness, which quantifies
the importance of a time-point. We illustrate the effectiveness of these new measures on
synthetic examples, and also give results on real data sets involving voice call, email and

Twitter.

© 2015 Elsevier Ltd. All rights reserved.

1. Background material
1.1. Betweenness

This work deals with centrality measures for dynamic
networks. We begin by summarizing some relevant con-
cepts from the static network setting. Our focus is on the
concept of betweenness, which arose in the social network
analysis literature [5,22] and has become prominent across
network science [16].

Loosely, betweenness quantifies the extent to which a
node is relied upon when messages are passed around a
network. Traditionally, shortest paths between nodes were
considered, and the betweenness of node r was found by
considering all other distinct nodes, i # j, and recording
the proportion of shortest paths between i and j that
involve node r. As pointed out by Freeman et al. [6] and
by Newman [17], key messages do not necessarily follow
geodesics, and hence there is scope for altering the defini-
tion in order to allow for other types of traversal through a
network. In [3], a general framework was presented, based
on functions of the adjacency matrix, and this is the
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approach that we follow here. Given an unweighted, direc-
ted network with N nodes, we let A ¢ RN*N denote the adja-
cency matrix, so that (A); = 1 if there is an edge from i to j
and (A); = 0 otherwise. It then follows that the exponen-

tial, exp(A), and resolvent, (I — «A)~", provide information
about the potential for pairwise communication [2]. This
can be understood by considering power series expansions
of the matrix functions and noting that (A")ij counts the
number of walks from i to j that involve exactly k edges.
In the case of the matrix resolvent, which dates back to
the work of Katz [13], the attenuation parameter, «, is cho-
sen in the range 0 < o < 1/p(A), where p(-) denotes the
spectral radius.

Communicability betweenness for a general node, r, was
then defined in [4] according to
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where Cy = ( 1 is a normalizing factor. Here E(r) has

N—1)2—(N-1)
nonzeros only in row and column r, and in this row and
column has —1 wherever A has 1; hence A — E(r) is the
adjacency matrix when all edges involving the node r are
removed. In words, the communicability betweenness for
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node r aggregates the relative decrease in exponential
communicability over all other pairs of nodes when node
ris removed from the network. In a similar manner, replac-
ing the matrix exponential by the matrix resolvent, 3]
defined the resolvent betweenness for node r as

(=AY )y — (= (A= E()) ")y
a2 2 ), i

y

)
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We assume here that the underlying network is fully con-
nected so that no division-by-zero issues arise in (1) and

(2).
1.2. Time dependent networks

Many types of interaction have a well-defined dynamic
aspect, giving rise to the study of temporal networks [12].
In this work, motivated by applications in telecommunica-
tion and on-line social media, and following the ideas in
[7], we consider a fixed set of N nodes and a discrete, finite
and ordered set of time points, ty < t; < --- < ty. We then
assume that the state of the network is supplied at each
time t,, as represented by an adjacency matrix, A¥. For
example, in the Twitter context, (A"); =1 may indicate
that account i sent at least one tweet to account j in the
time interval (t; 1, ty].

In [10] the concept of a dynamic walk was introduced as
a means to extend centrality measures from the static case.
In words, a dynamic walk of length w between a pair of
nodes is any suitable traversal along w edges that respects
the arrow of time — we can remain at a node and wait for an
edge to appear, but we cannot go back in time and use an
edge that subsequently disappeared. More precisely, a
dynamic walk of length w from node i; to node i,,,; consists
of a sequence of edges iy — i,ip — i3,...,1y — iwy1 and a
nondecreasing sequence of times ¢, <t,, <--- <, such
that Al , # 0.]Just as matrix powers can be used to count

Im l
walks in the static case, dynamic walks can be counted via
matrix products. It was shown in [10] that the N x N matrix

Q= (i~ ch["l)*1 (1~ ocA[M]>71 3)

is such that (Q); gives a weighted count of the number of
dynamic walks of length w from node i to node j, where
walks of length w are scaled by a factor «". This is a direct
generalization of the static case described in subSection 1.1,
where a single resolvent matrix was used (M = 0), and in
order to ensure convergence of the underlying power ser-
ies, we require o < 1/max;p(A"). Following [10] we refer
to Q in (3) as the dynamic communicability matrix. We note
that Q takes account of effects that cannot be seen through
the individual snapshots, {AW}Q”:O, or the aggregate adja-
cency matrix Yy ;A¥. The usefulness of this concept has
been illustrated on real data sets in [9,10,15,19], where
Katz-style broadcast and receive centralities were com-
puted for time-dependent networks. Similar shortest-path
based measures were developed and tested in [18,20,21].

Our aim here is to use dynamic communicability as a
means to quantify betweenness.

2. Temporal and nodal betweenness for dynamic
networks

We will use Q in (3) as the basis for two types of
betweenness measure. First, following directly from (2),
we will look at the effect on communicability of removing
a node for all time. Letting E¥ denote the matrix with nonz-
eros only in row and column r of A¥, and in this row and
column having 1 wherever A¥ has 1, we see that
Al .= AWM _ EW is the adjacency matrix at time point k when
all edges involving the node r are removed. We then let

Q= (1-aA?) " (1—aA) (4)

In this way, Q, has (i,j) element that quantifies the ability
of node i to communicate with node j using dynamic walks
that do not involve node r.

In this temporal context there is another clear sense in
which betweenness can be measured. Rather than focusing
on individual nodes, we may consider time points - in
order to identify critical stages in the network evolution,
we may record how much the dynamic communicability
decreases when a time point is removed. We will let

{7\““”}2/’:0 denote the adjacency matrix sequence with A9
replaced by O; that is,

Akad — AK  for k=g, and A49 =0.
We then define

QY = (1 - a/i[‘l‘”)*l (1 - oc/i“-ﬂf . (1 - oc/i[’v'm)*]. (5)

In practice, since we are only concerned with comparing
nodes and comparing time points based on the relative
change that their removal causes to dynamic communica-
bility, we are free to apply a scaling. Hence, to avoid numer-
ical under or overflow, we will scale by ||Q||, where || - ||
denotes the Euclidean norm. With a slight re-use of nota-

tion, we will therefore redefine Q,Q, and Q9 to denote

these scaled versions. Setting Q""" = @\ = Q119 = I, we
therefore let, fork =0,1,..., M,

Q[k] < ) 1 (6)
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Following (2), we then define the nodal betweenness of
node r to be
| ("), - (@),
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and the temporal betweenness of time point q to be
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