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a b s t r a c t

Using a generalization of vector calculus for the case of non-integer dimensional space we
consider a Poiseuille flow of an incompressible viscous fractal fluid in the pipe. Fractal fluid
is described as a continuum in non-integer dimensional space. A generalization of the
Navier–Stokes equations for non-integer dimensional space, its solution for steady flow
of fractal fluid in a pipe and corresponding fractal fluid discharge are suggested.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A cornerstone of fractal fluids is the non-integer dimen-
sion [1–3]. The mass of fractal fluid satisfies a power law
relation M � RD, where M is the mass of the ball region
with radius R, and D is the mass dimension [4]. Fractal fluid
can be described by four different approaches: (1) Using
the methods of ‘‘Analysis on fractals’’ [5–10] it is possible
to describe fractal media; (2) An application of fractional-
differential continuum models suggested in [11,12], and
then developed in [13–18], where so-called local fractional
derivatives [19] are used; (3) Applying fractional-integral
continuum models suggested in [4,20–23] (see also [24–
32]), where integrations of non-integer orders and a notion
of density of states [4] are used; (4) Fractal media can be
described by using the theory of integration and differenti-
ation for a non-integer dimensional space [33–35].

Let us note that main difference of the continuum mod-
els with non-integer dimensional spaces form the frac-
tional continuum models suggested in [4,20–23] may be
reduced to the following. (a) Arbitrariness in the choice
of the numerical factor in the density of states is fixed by
the equation of the volume of non-integer dimensional ball
region. (b) In the fractional continuum models suggested in

[4,20,21], the differentiations are integer orders whereas
the integrations are non-integer orders. In the continuum
models with non-integer dimensional spaces the integra-
tions and differentiations are defined for the spaces with
non-integer dimensions.

In this paper, we consider approach based on the non-
integer dimensional space. The power law M � RD can be
naturally derived by using the integrations in non-integer
dimensional space [33], where the mass dimension of frac-
tal fluid is connected with the dimension of this space. A
vector calculus for non-integer dimensional space pro-
posed in this paper allows us to use continuum models
with non-integer dimensional spaces to describe for fractal
fluids. This is due to the fact that although the non-integer
dimension does not reflect completely the geometric prop-
erties of the fractal media, it nevertheless permits a num-
ber of important conclusions about the behavior of
fractal structures. Therefore continuum models with non-
integer dimensional spaces can be successfully used to
describe fractal fluids.

Integration over non-integer dimensional spaces are
actively used in the theory of critical phenomena and
phase transitions in statistical physics [36,37], and in the
dimensional regularization of ultraviolet divergences in
quantum field theory [33,38,39]. The axioms for integra-
tions in non-integer dimensional space are proposed in
[34,40] and this type of integration is considered in the
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book by Collins [33] for rotationally covariant functions. In
the paper [34] a mathematical basis of integration on
non-integer dimensional space is given. Stillinger [34] sug-
gested a generalization of the Laplace operator for non-
integer dimensional spaces also. Using a product measure
approach, the Stillinger’s methods [34] has been general-
ized by Palmer and Stavrinou [35] for multiple variables
case with different degrees of confinement in orthogonal
directions. The scalar Laplace operators suggested by Stil-
linger [34] and Palmer, Stavrinou [35] for non-integer
dimensional spaces, have successfully been used for effec-
tive descriptions in physics and mechanics. The Stillinger’s
form of Laplacian for the Schrödinger equation in non-inte-
ger dimensional space is used by He [41–43] to describe a
measure of the anisotropy and confinement by the effec-
tive non-integer dimensions. Quantum mechanical models
with non-integer (fractional) dimensional space have been
discussed in [34,35,44–52]. Recent progress in non-integer
dimensional space approach also includes description of
the fractional diffusion processes in non-integer dimen-
sional space in [53], and the electromagnetic fields in
non-integer dimensional space in [54–61].

Unfortunately, [34,35] proposed only the second order
differential operators for scalar fields in the form of the
scalar Laplacian in the non-integer dimensional space. A
generalization of the vector Laplacian [62] for the non-
integer dimensional space is not suggested in [34,35].
The first order operators such as gradient, divergence, curl
operators are not considered in [34,35] also. In the work
[61] the gradient, divergence, and curl operators are sug-
gested only as approximations of the square of the Laplace
operator. Consideration only the scalar Laplacian in the
non-integer dimensional space approach greatly restricts
us in application of continuum models with non-integer
dimensional spaces for fractal fluids and material. For
example, we cannot use the Stillinger’s form of Laplacian
for vector field vðr; tÞ in hydrodynamics of fractal fluids,
in fractal theory of elasticity and thermoelasticity, in elec-
tromagnetic theory of fractal media to describe processes
in the framework non-integer dimensional space approach.

In this paper, we propose to use a vector calculus for
non-integer dimensional space, and we define the first
and second orders differential vector operations such as
gradient, divergence, the scalar and vector Laplace opera-
tors for non-integer dimensional space. In order to derive
the vector differential operators in non-integer dimen-
sional space we use the method of analytic continuation
in dimension. For simplification we consider rotationally
covariant scalar and vector functions that are independent
of angles. It allows us to reduce differential equations in
non-integer dimensional space to ordinary differential
equations with respect to r. The proposed operators allow
us to describe fractal media to describe processes in the
framework of continuum models with non-integer dimen-
sional spaces. In this paper we describe a Poiseuille flow of
an incompressible viscous fractal fluid in the pipe. A gener-
alization of the Navier–Stokes equation for non-integer
dimensional space to describe for fractal fluid are sug-
gested. A solution of this equation for steady flow of fractal
fluid in a pipe and corresponding fractal fluid discharge are
derived.

2. Fractal fluids

A basic characteristic of fractal fluids is the non-integer
dimensions such as mass or ‘‘particle’’ dimensions [4]. For
fractal fluids the number of particles NDðWÞ or mass
MDðWÞ in any region W � R3 of this fluid increase more
slowly than the 3-dimensional volume V3ðWÞ of this
region. For the ball region W with radius R in an isotropic
fractal fluid, this property can be described by the relation
between the number of particles NDðWÞ in the region W of
fractal fluid, and the radius R in the form

NDðWÞ ¼ N0ðR=R0ÞD; R=R0 � 1; ð1Þ

where R0 is the characteristic size of fractal fluid such as a
minimal scale of self-similarity of a considered fractal fluid.
The number D is called the ‘‘particle’’ dimension. It is a
measure of how the fluid particles fill the space. The
parameter D does not depend on the shape of the region
W. Therefore fractal fluids can be considered as fluid with
non-integer ‘‘particle’’ or mass dimension.

If the fractal fluid consists of particles with identical
masses m0, then relation (1) gives

MDðWÞ ¼ M0ðR=R0ÞD; R=R0 � 1; ð2Þ

where M0 ¼ m0 N0. In this case, the mass dimension coin-
cides with the ‘‘particle’’ dimension.

As the basic mathematical tool for continuum models of
fractal fluids, we propose to use the integration and differ-
entiation in non-integer dimensional spaces. In Section 7,
we will show that the power-law relation (2) for an isotro-
pic fractal fluid can be naturally derived by using the inte-
gration over non-integer dimensional space, where the
space dimension is equal to the mass dimension of fractal
fluid.

In order to describe fractal fluid by continuum models
with non-integer dimensional spaces, we use the concepts
of density of states c3ðD; rÞ that describes how closely
packed permitted places (states) in the space R3, where
the fractal fluid is distributed. The expression
dVDðrÞ ¼ c3ðD; rÞdV3 is equal to the number of permitted
places (states) between V3 and V3 þ dV3 in R3. The nota-
tion dDr also will be used instead of dVDðrÞ. Note that den-
sity of states and distribution function are different
concepts, and it is impossible to describe all properties of
fractal fluids by the distribution function only.

For fractal fluids, we can use the equation

dNDðWÞ ¼ nðrÞdVDðrÞ; ð3Þ

where nðrÞ is a concentration of particles that describes a
distribution of number of particles on a set of permitted
places (possible states). The density of states is chosen
such that dVDðrÞ ¼ c3ðD; rÞdV3 describes the number of
permitted states in dV3.

The form of the function c3ðD; rÞ is defined by symme-
tries of considered problem and properties of the described
fractal fluid. A general property of density of states for frac-
tal fluids is a power-law type of these functions that
reflects a scaling property (fractality) of the fractal fluid.
To simplify our consideration in this paper we will con-
sider only isotropic fractal fluids with density of states that

V.E. Tarasov / Chaos, Solitons & Fractals 67 (2014) 26–37 27



Download English Version:

https://daneshyari.com/en/article/1892741

Download Persian Version:

https://daneshyari.com/article/1892741

Daneshyari.com

https://daneshyari.com/en/article/1892741
https://daneshyari.com/article/1892741
https://daneshyari.com

