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a b s t r a c t

The phenomenon of a topological monodromy in integrable Hamiltonian and nonholo-
nomic systems is discussed. An efficient method for computing and visualizing the mon-
odromy is developed. The comparative analysis of the topological monodromy is given for
the rolling ellipsoid of revolution problem in two cases, namely, on a smooth and on a rough
plane. The first of these systems is Hamiltonian, the second is nonholonomic. We show
that, from the viewpoint of monodromy, there is no difference between the two systems,
and thus disprove the conjecture by Cushman and Duistermaat stating that the topological
monodromy gives a topological obstruction for Hamiltonization of the rolling ellipsoid of
revolution on a rough plane.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The paper has been motivated by the following general question in classical mechanics: how and to what extent does
the dynamical behavior of nonholonomic systems differ from that of Hamiltonian ones? This question is closely related to
the Hamiltonization problem: is it possible to turn a given nonholonomic system into Hamiltonian by an appropriate choice
of a Poisson structure and change of time? This problem is quite nontrivial, discussed in many papers (see, e.g., [1–12]) and
has many aspects, one of which is finding topological obstructions to Hamiltonization of integrable nonholonomic systems.

Here by integrability we understand the existence of sufficiently many first integrals such that their common regular
levels are diffeomorphic to two-dimensional tori (as in the case of integrable Hamiltonian systems with two degrees of
freedom). The phase space of such a system is foliated into invariant 2-tori. Speaking of topological obstructions to Hamil-
tonization, we mean the following natural question: is it possible to find those properties of such a foliation which allow us
to distinguish it from similar foliations that appear in integrable Hamiltonian systems (the so-called Liouville foliations)?

Clearly, no such obstructions exist near a regular fiber. Moreover, it is well known that in the presence of an invariant
measure the system (after an appropriate change of time) admits a Hamiltonian representation (see [13–15]). However,
topological obstructions may exist in a neighborhood of singular fibers. One of such obstructions is the so-called topological
monodromy of a foliation into invariant tori. The difference between Hamiltonian and non-Hamiltonian monodromy was
one of the main issues studied in the famous paper by J. Duistermaat and R. Cushman [16] where a detailed topological
treatment of the monodromy in integrable nonholonomic systems was given. As a concrete example of a nonholonomic
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system, where the monodromy is essentially non-Hamiltonian and Hamiltonization is, therefore, impossible, the authors
suggest the problem of the rolling prolate ellipsoid of revolution on a rough plane (i.e., rolling without sliding).1

However, it is well known that quite a similar problem in the case of a smooth plane (i.e., when the friction is zero)
is Hamiltonian. Thus, it would be very interesting to observe any difference in the dynamics of these two systems. Since
the monodromy is a rather rough topological characteristic, the phenomenon should be easy to observe. Our preliminary
considerations, however, did not reveal any difference in the behavior of these systems andwedecided to carry out a detailed
analysis of the topological monodromy for both of them.

The paper is organized as follows. In the next section we recall the notion of monodromy for integrable systems and
discuss some of its properties in the case of Hamiltonian systems. In particular, following [16], we make an emphasis on
the difference between Hamiltonian and non-Hamiltonian cases. Then we discuss one of possible methods for calculating
monodromy in systems with rotational symmetry, which is based on analysis of some properties of the Poincaré map for a
specially chosen section. In Sections 3 and 4 we apply this method to study the monodromy in two integrable problems of
a rolling prolate ellipsoid of revolution: on a smooth plane (Hamiltonian case) and on a rough plane (nonholonomic case).

The main conclusion of our work is that from the viewpoint of monodromy these two systems behave absolutely in the
same way. In particular, the monodromy does not give any obstruction to Hamiltonization of this nonholonomic system.
Moreover, our analysis shows, in fact, that the foliations into invariant tori in these two cases are isomorphic. However,
this does not mean that the monodromy is useless for the Hamiltonization problem. On the contrary, it makes it possible
to essentially reduce the ‘‘searching sector’’ for a suitable Poisson structure. These conclusions are discussed in the closing
section of the paper.

2. Topological monodromy in integrable systems

The notion of a monodromy for integrable (Hamiltonian) systems was introduced by Duistermaat in [17] as one of
obstructions to the existence of global action–angle variables. Since this notion has a pure topological nature, i.e. it is
completely defined by the properties of the foliation into invariant tori, we can easily extend it to the case of nonholonomic
integrable systems.

We recall the definition of monodromy in the case we are dealing with (some generalizations are discussed in [18,
19]). Consider an integrable system whose phase space is foliated into two-dimensional invariant submanifolds (tori). The
singular fibers are ignored or just removed. Choose a particular torus T0 and some deformation of it Tt , t ∈ [0, 1], such that
T1 = T0. In other words, we consider a closed path in the space of parameters (i.e., values of the first integrals) that defines
a deformation after which the torus returns to the initial position.

Next we fix a pair of basis cycles λ0, µ0 on the initial torus T0 and, by changing them continuously in the process of
deformation,we obtain a family of cyclesλt , µt forming a basis on Tt for each fixed value of t ∈ [0, 1].When the deformation
is completed, on the torus T1 = T0 we obtain a pair of basis cycles λ1, µ1. It is clear that if the deformation takes place inside
a small neighborhood of T0, then the cycles so obtained are homologous to the initial cycles λ0, µ0, i.e. λ0 and λ1 can be
continuously deformed to each other inside T0 (similarly for µ0 and µ1). However if the family Tt goes ‘‘far’’ from the initial
torus T0, it may happen that new cycles λ1, µ1 are essentially different from λ0, µ0. They nevertheless still form a basis and
therefore, up to a homotopy, are related to the initial cycles by means of a certain integer unimodular matrix:

λ1
µ1


=


a b
c d


λ0
µ0


, a, b, c, d ∈ Z, ad − bc = 1.

That is exactly what is called the monodromy matrix corresponding to the deformation Tt , T0 = T1. If it is different from
the identity matrix we say that the monodromy is non-trivial.

Let us make some general comments about the monodromy which clarify its nature.
If we consider the foliation of the phase space M4 into invariant manifolds,2 related to two integrals H and F , then

it is convenient to consider the integral map Φ = (H, F):M → R2, its image Φ(M) and the bifurcation diagram
Σ ⊂ Φ(M) ⊂ R2. Then choosing an initial torus T0 is equivalent to choosing a non-singular (that is lying outside of
Σ) point a ∈ Φ(M). The torus T0 itself is the preimage of a. The deformation of the torus is defined by choosing a closed
curve γ (t) in the image of the integral map which does not intersect the bifurcation diagram (here we, or course, assume
that γ (0) = γ (1) = a). The curve γ defines a deformation of the torus Tt = Φ−1(γ (t)) and, consequently, themonodromy.

If the curve γ in the image of themomentummap is continuously deformed in such a way that the deformation does not
touch the bifurcation diagram, then the monodromy will not change. In particular, a non-trivial monodromy may appear
for non-contractible loops γ only. Such non-contractible curves do not always exist, but very often they do, in particular, if

1 Here is a citation from [16]: ‘‘Because the monodromy going around this heteroclinic cycle is the identity, the rolling prolate ellipsoid of revolution
cannot be made into a Hamiltonian system, even though it is time reversible and energy conserving. This is an example where a global invariant (namely,
monodromy) has been used to show that a 4-dimensional conservative time reversible system is not Hamiltonian’’. Unfortunately, the paper does not
contain any detailed explanations to this conclusion.
2 This construction does not change if we consider a dynamical system on a five-dimensional spaceM5 which admits three integralsH, F1, F2 . The rolling

ellipsoid on a plane is a system of this kind.
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