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a b s t r a c t

Due to Poinsot’s theorem, the motion of a rigid body about a fixed point is represented as
rolling without slipping of the moving hodograph of the angular velocity over the fixed
one. If the moving hodograph is a closed curve, visualization of motion is obtained by the
method of P.V. Kharlamov. For an arbitrarymotion in an integrable problemwith an axially
symmetric force field the moving hodograph densely fills some two-dimensional surface
and the fixed one fills a three-dimensional surface. In this paper,we consider the irreducible
integrable case in which both hodographs are two-frequency curves. We obtain the equa-
tions of bearing surfaces, illustrate the main types of these surfaces. We propose a method
of the so-called non-straight geometric interpretation representing the motion of a body
as a superposition of two periodic motions.

© 2014 Elsevier B.V. All rights reserved.

Introduction

According to the famous result of L. Poinsot [1], an arbitrary motion of a rigid body about a fixed point is represented
by rolling without slipping of the moving hodograph of the angular velocity vector over the fixed hodograph of this vector.
Since these two curves viewed from the same space have at any time moment the common tangent line, the similar state-
ment is valid also for the conical surfaces generated by the instant rotation axis, namely, themoving axoid is rolling without
slipping over the fixed one. The point is that, in the purely rotational motion of a rigid body, the so-called relative and ab-
solute time-derivatives of the angular velocity coincide. The general situation is illustrated in Fig. 1. Here ω is the angular
velocity, ω̇ stands for the relative time-derivative (with respect to some reference frame strictly attached to the body) and
dω/dt is the absolute time-derivative (with respect to an inertial frame).

Estimating his ownwork, Poinsot wrote that ‘‘it enables us to represent to ourselves the motion of a rigid body as clearly
as that of a moving point’’. Due to the problems of finding the fixed hodograph, Poinsot gave only one representation of
motion, namely, for the Euler case of the body rotation without external forces.

The classical integrable cases in the rigid body dynamics deal with the motions of a rigid body under the influence of
axially symmetric potential fields (the homogeneous gravity field, the central Newtonian field). Such systems are called
reducible since the corresponding Euler–Poisson equations describe the motion up to unknown rotations about the force
symmetry axis and can be reduced to Hamiltonian systems with two degrees of freedom. This means that while the moving
hodograph is completely defined by the solution of the Euler–Poisson equations, the equations of the fixed hodographmust
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Fig. 1. Poinsot’s theorem.

include an additional quadrature. The same problem arises for the solutions of the Kirchhoff equations of rigid body motion
in an ideal fluid, which also can be treated as the equations of a gyrostat motion about a fixed point.

P.V. Kharlamov [2] proposed a natural way to find the fixed hodograph and to investigate its properties for all values of
the existing parameters. This method is known as the hodographs method of the kinematic interpretation of motion and is
based on applying some non-holonomic kinematic characteristics. If the solution of the Euler–Poisson equations is periodic,
then themoving hodograph is, obviously, a closed curve. In this case the fixed hodograph, as a rule, densely fills a domain on
a two-dimensional surface. P.V. Kharlamov has shown that this surface is a surface of rotation with themeridian completely
defined by the initial periodic solution by means of explicit functions and the missing angular coordinate of the fixed hodo-
graph can be found by integrating the known function of time. The equations obtained in [2] gave rise to geometric inter-
pretations built for numerous cases of partial integrability (see reviews in [3,4] and the contemporary state of investigations
in [5]).

For an arbitrary motion in integrable reducible systems, the moving hodograph in the generic case is a two-frequency
vector function of time. Therefore, the fixed hodograph for almost all initial data densely fills a three-dimensional region
in space. In [6–8], I.N. Gashenenko investigated the hodographs properties for quasi-periodic solutions in the classical cases
of Goryachev–Chaplygin and Kovalevskaya. He used the equations of the paper [2], the ideas of the number theory and
Fourier analysis to describe those classes of non-resonant motions in the integrable reducible rigid body systems for which
the coordinates of the angular velocity in the inertial space also are two-periodic functions of time. In other words, on these
motions with irrational rotation number on the corresponding regular Liouville torus (on the connected component of a
regular integral manifold of the Euler–Poisson equations) both moving and fixed hodographs fill compact two-dimensional
surfaces. The motion is represented by rolling of one surface ‘‘through’’ another in such a way that a curve dense in the first
surface rolls without slipping over a similar curve dense in the second surface. Still such motions are destroyed by small
perturbations of the integral constants.

In this paper, we consider the case when the force field does not have any symmetry axis. The system then cannot be
globally reduced to two degrees of freedom. Nevertheless, in integrable systems the motions consisting of the points where
the first integrals are dependent play the most important role in the topological analysis of the initial system as a whole,
and their geometry can present, clearly enough, the separating cases for different types of the body rotation. Such criti-
cal motions are organized into invariant four-dimensional manifolds with the induced dynamics described by Hamiltonian
systemswith twodegrees of freedomcalled critical subsystems (see e.g. [9]). All regular integralmanifolds of the critical sub-
systems consist of two-dimensional tori (Liouville tori) and both hodographs lie in the two-dimensional surfaces obtained
as the images of the corresponding torus under projections from the 6-dimensional phase space onto three-dimensional
spaces of the angular velocities (with respect to the rotating body and to some inertial frame). For non-resonant cases the
hodographs are dense in these surfaces. The explicit solutions of the critical subsystems allow us to obtain an immedi-
ate computer visualization of the surfaces bearing the hodographs. Below we illustrate this process for one of the critical
subsystems in the generalized Kovalevskaya case. Simultaneously, we propose another way to describe the body’s motion
by presenting it as a composition of some simple motions. This composition is based strictly on the known separation of
variables.

1. The explicit solution

We now consider the system with two degrees of freedom found in [10]. Its explicit algebraic solution in separated
variables and the rough topological analysis are given in [11]. Let us write out the solution in a slightly different form
convenient for the purposes of this paper. Suppose that the rigid body with the inertia tensor of the Kovalevskaya type
is placed in two linearly independent homogeneous force fields with the centers of application of the fields in the equatorial
plane of the body. Let O be the fixed point and {e1, e2, e3} the orthonormal basis of the principal inertia axes. The inertia
tensor after choosing the dimensionless values becomes diag{2, 2, 1}. As shown in [9], the forces can always be supposed
orthogonal and the centers of application can be taken on the principal inertia axes pointed out from O by the vectors e1 and
e2. Let α and β be the unit direction vectors of the intensities of the force fields fixed in the inertial space and represented
by their coordinates in the moving frame Oe1e2e3. Then the geometric integrals take the form α2

= 1, β2
= 1, α · β = 0,



Download English Version:

https://daneshyari.com/en/article/1892772

Download Persian Version:

https://daneshyari.com/article/1892772

Daneshyari.com

https://daneshyari.com/en/article/1892772
https://daneshyari.com/article/1892772
https://daneshyari.com

