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a b s t r a c t

We revisit recent results on integrable cases for higher-dimensional generalizations of the
2D pentagram map: short-diagonal, dented, deep-dented, and corrugated versions, and
define a universal class of pentagrammaps, which are proved to possess projective duality.
We show that inmany cases the pentagrammap cannot be included into integrable flows as
a time-one map, and discuss how the corresponding notion of discrete integrability can be
extended to include jumps between invariant tori. We also present a numerical evidence
that certain generalizations of the integrable 2D pentagram map are non-integrable and
present a conjecture for a necessary condition of their discrete integrability.

© 2014 Elsevier B.V. All rights reserved.

The goal of this paper is three-fold. First we revisit the recent progress in finding integrable generalizations of the 2D
pentagrammap. Secondly, we discuss a natural framework for the notion of a discrete integrable Hamiltonian map. It turns
out that the Arnold–Liouville theorem on existence of invariant tori admits a natural generalization to allow discrete dy-
namics with jumps between invariant tori, which is relevant for many pentagram maps. Lastly, we define a universal class
of pentagram-type maps, describe a projective duality for them, and present a numerical evidence for non-integrability
of several pentagram maps in 2D and 3D. In view of many new integrable generalizations found recently, a search for a
non-integrable generalization of the pentagrammap was brought into light, and the examples presented belowmight help
focusing the efforts for such a search.

1. Types of pentagrammaps

Recall that the pentagrammap is amap on plane convex polygons considered up to their projective equivalence, where a
new polygon is spanned by the shortest diagonals of the initial one, see [1]. It exhibits quasi-periodic behavior of (projective
classes of) polygons in 2D under iterations, which indicates hidden integrability. The integrability of this map was proved
in [2], see also [3].

While the pentagram map is in a sense unique in 2D, its generalizations to higher dimensions allow more freedom. It
turns out that while there seems to be no natural generalization of this map to polyhedra, one can suggest several natural
integrable extensions of the pentagram map to the space of generic twisted polygons in higher dimensions.

Definition 1.1. A twisted n-gon in a projective space Pd with amonodromyM ∈ SLd+1 is a doubly-infinite sequence of points
vk ∈ Pd, k ∈ Z, such that vk+n = M ◦ vk for each k ∈ Z, and where M acts naturally on Pd. We assume that the vertices vk
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Fig. 1. Deeper pentagram map T1,3 in 2D.

Fig. 2. Different diagonal planes in 3D: for Tsh, T1 , and T2 .

are in general position (i.e., no d + 1 consecutive vertices lie in the same hyperplane in Pd), and denote by Pn the space of
generic twisted n-gons considered up to the projective equivalence.

We use projective spaces defined over reals R (as the easiest ones to visualize), over complex numbers C (to describe
algebraic–geometric integrability), and over rational numbers Q (to perform a non-integrability test). All definitions below
work for any base field. General pentagram maps are defined as follows.

Definition 1.2. We define 3 types of diagonal hyperplanes for a given twisted polygon (vk) in Pd. (a) The short-diagonal
hyperplane Psh

k is defined as the hyperplane passing through d vertices of the n-gon by taking every other vertex starting
with vk:

Psh
k := (vk, vk+2, vk+4, . . . , vk+2(d−1)).

(b) The dented diagonal plane hyperplane Pm
k for a fixed m = 1, 2, . . . , d − 1 is the hyperplane passing through all vertices

from vk to vk+d but one, by skipping only the vertex vk+m:

Pm
k := (vk, vk+1, . . . , vk+m−1, vk+m+1, vk+m+2, . . . , vk+d).

(c) The deep-dented diagonal plane hyperplane Pm
k for fixed positive integers m and p ≥ 2 is the hyperplane as above that

passes through consecutive vertices, except for one jump, when it skips p − 1 vertices vk+m, . . . , vk+m+p−2:

Pm,p
k := (vk, vk+1, . . . , vk+m−1, vk+m+p−1, vk+m+p, . . . , vk+d+p−2).

(Here Pm,2
k corresponds to Pm

k in (b).)
Now the corresponding pentagram maps Tsh, Tm, and Tm,p are defined on generic twisted polygons (vk) in Pd by intersecting
d consecutive diagonal hyperplanes:

Tvk := Pk ∩ Pk+1 ∩ · · · ∩ Pk+d−1,

where each of the maps Tsh, Tm, and Tm,p uses the definition of the corresponding hyperplanes Psh
k , Pm

k , and Pm,p
k . These

pentagram maps are generically defined on the classes of projective equivalence of twisted polygons T : Pn → Pn.

Example 1.3. For d = 2 one can have only m = 1 and the definitions of Tsh and Tm coincide with the standard 2D
pentagram map Tst in [1] (up to a shift in vertex numbering). The deep-dented maps T1,p in 2D are the maps T1,pvk :=

(vk, vk+p) ∩ (vk+1, vk+p+1) obtained by intersecting deeper diagonals of twisted polygons, see Fig. 1.
For d = 3 the map Tsh uses the diagonal planes Psh

k := (vk, vk+2, vk+4), while for the dented maps T1 and T2 one has
P1
k = (vk, vk+2, vk+3) and P2

k = (vk, vk+1, vk+3), respectively, see Fig. 2.

Theorem 1.4. The short-diagonal Tsh, dented Tm and deep-dented Tm,p maps are integrable in any dimension d on both twisted
and closed n-gons in a sense that they admit Lax representations with a spectral parameter.

The integrability of the standard 2D pentagram map Tst := Tsh = Tm was proved in [2], while its Lax representation was
found in [3]. In [4] integrability of the pentagrammap for corrugated polygons (which we discuss below) was proved, which
implies integrability of the maps T1,p in 2D.
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