Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Integrability in differential coverings

Joseph Krasil'shchik*

Slezská univerzita v Opavě, Matematický ústav v Opavě, Na Rybníčku 626/1, 746 01, Opava, Czech Republic Independent University of Moscow, 119002, B. Vlasyevskiy Per. 11, Moscow, Russia

ARTICLE INFO

Article history: Available online 3 January 2014

MSC: 37K05 37K10 37K35

Keywords: Geometry of differential equations Integrability Symmetries Conservation laws Differential coverings

0. Introduction

The notion of a covering (or, better, *differential* covering) was introduced by Vinogradov in [1] and elaborated in detail later in [2,3]. Coverings, explicitly or implicitly, provide an adequate background to deal with nonlocal aspects in the geometry of PDEs (nonlocal symmetries and conservation laws, Wahlquist–Estabrook prolongation structures, Lax pairs, zero-curvature representations, etc.). Coverings of a special type (the so-called tangent and cotangent one) are efficient in analysis and construction of Hamiltonian structures and recursion operators, see [4]. A very interesting development in the theory of coverings can also be found in [5].

In this paper, we solve the following naturally arising problem: let a covering $\tau: \tilde{\mathcal{E}} \to \mathcal{E}$ be given and assume that the equation \mathcal{E} is known to possess infinite number of symmetries and/or conservation laws. Is $\tilde{\mathcal{E}}$ endowed with similar properties? The answer, under reasonable assumptions, is positive.

In Section 1, we present a short introduction to the theory of coverings based mainly on [3] and formulate and prove necessary auxiliary facts. Section 2 contains the proof of the main result for the case of Abelian coverings. Finally, the non-Abelian case is discussed in Section 3.

1. Basic notions

For a detailed exposition of the geometrical approach to PDEs we refer the reader to the books [6,7]. Coverings are discussed in [3].

ABSTRACT

Let $\tau: \tilde{\mathcal{E}} \to \mathcal{E}$ be a differential covering of a PDE $\tilde{\mathcal{E}}$ over \mathcal{E} . We prove that if \mathcal{E} possesses infinite number of symmetries and/or conservation laws then $\tilde{\mathcal{E}}$ has similar properties. © 2014 Published by Elsevier B.V.

^{*} Correspondence to: Independent University of Moscow, 119002, B. Vlasyevskiy Per. 11, Moscow, Russia. E-mail addresses: josephkra@gmail.com, josephk@diffiety.ac.ru.

^{0393-0440/\$ -} see front matter © 2014 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.geomphys.2013.12.009

Equations

Let *M* be a smooth manifold, dim M = n, and $\pi: \mathcal{E} \to M$, dim $\mathcal{E} = m + n$, be a locally trivial vector bundle. Consider an infinitely prolonged differential equation $\mathcal{E} \subset J^{\infty}(\pi)$ embedded to the space of infinite jets. One has the surjection $\pi_{\infty}: \mathcal{E} \to M$. The main geometric structure on \mathcal{E} is the *Cartan connection* $\mathcal{C}: Z \mapsto \mathcal{C}_Z$ that takes vector fields on *M* to those on \mathcal{E} . Vector fields of the form \mathcal{C}_Z are called *Cartan fields*. The connection is flat, i.e., $\mathcal{C}_{[Z,Z']} = [\mathcal{C}_Z, \mathcal{C}_{Z'}]$ for any vector fields on *M*. The corresponding horizontal distribution (the *Cartan distribution*) on \mathcal{E} is integrable and its maximal integral manifolds are solutions of \mathcal{E} . We always assume \mathcal{E} to be *differentially connected* which means that for any set of linearly independent vector fields Z_1, \ldots, Z_n on *M* the system

$$\mathcal{C}_{Z_i}(h)=0, \quad i=1,\ldots,n,$$

has constant solutions only.

If x^1, \ldots, x^n are local coordinates on M then the Cartan connection takes the partial derivatives $\partial/\partial x^i$ to the *total derivatives* D_{x^i} on \mathcal{E} . Flatness of \mathcal{C} amounts to the fact that the total derivatives pair-wise commute, $[D_{x^i}, D_{x^j}] = 0$.

A π_{∞} -vertical vector field *S* is a symmetry of \mathcal{E} if it commutes with all Cartan fields, i.e., $[S, C_Z] = 0$ for all *X*. The set of symmetries is a Lie algebra over \mathbb{R} denoted by sym \mathcal{E} .

A differential *q*-form ω on \mathcal{E} , q = 0, 1, ..., n, is *horizontal* if $i_V \omega = 0$ for any π_∞ -vertical field *V*. The space of these forms is denoted by $\Lambda_h^q(\mathcal{E})$. Locally, horizontal forms are

$$\omega = \sum a_{i_1,\ldots,i_q} \mathrm{d} x^{i_1} \wedge \cdots \wedge \mathrm{d} x^{i_q}, \quad a_{i_1,\ldots,i_q} \in \mathcal{F}(\mathcal{E}).$$

The *horizontal de Rham differential* $d_h: \Lambda_h^q(\mathcal{E}) \to \Lambda_h^{q+1}(\mathcal{E})$ is defined, whose action is locally presented by

$$\mathbf{d}_h(a_{i_1,\ldots,i_q}\mathbf{d} x^{i_1}\wedge\cdots\wedge\mathbf{d} x^{i_q})=\sum_{i=1}^n D_{x^i}(a_{i_1,\ldots,i_q})\mathbf{d} x^i\wedge\mathbf{d} x^{i_1}\wedge\cdots\wedge\mathbf{d} x^{i_q}$$

A closed horizontal (n - 1)-form is called a *conservation law* of \mathcal{E} . Thus, conservation laws are defined by $d_h \omega = 0$, $\omega \in \Lambda_h^{n-1}(\mathcal{E})$. A conservation law is *trivial* if $\omega = d_h \rho$ for some $\rho \in \Lambda_h^{n-2}(\mathcal{E})$. The quotient space of all conservation laws modulo trivial ones is denoted by cl \mathcal{E} .

If $S \in \text{sym } \mathcal{E}$ and ω is a conservation law then the Lie derivative $L_S \omega$ is a conservation law as well and trivial conservation laws are taken to trivial ones. Thus we have a well-defined action $L_S: cl\mathcal{E} \to cl\mathcal{E}$.

Coverings

Let us now give the main definition. Consider a locally trivial vector bundle $\tau: \tilde{\mathcal{E}} \to \mathcal{E}$ of rank r and denote by $\mathcal{F}(\mathcal{E})$ and $\mathcal{F}(\tilde{\mathcal{E}})$ the algebras of smooth functions on \mathcal{E} and $\tilde{\mathcal{E}}$, respectively. We have the embedding $\tau^*: \mathcal{F}(\mathcal{E}) \hookrightarrow \mathcal{F}(\tilde{\mathcal{E}})$.

Definition 1. We say that τ carries a *covering structure* (or is a *differential covering* over \mathcal{E}) if: (a) there exists a flat connection $\tilde{\mathcal{E}}$ in the bundle $\pi_{\infty} \circ \tau : \tilde{\mathcal{E}} \to M$ and (b) this connection enjoys the equation

$$\tilde{\mathcal{C}}_{Z}\big|_{\mathcal{F}(\mathcal{E})} = \mathcal{C}_{Z}$$

for all vector fields Z on M.

In local coordinates, any covering is determined by a system of vector fields

$$D_{x^i} = D_{x^i} + X_i, \quad i = 1, \dots, n,$$

on $\tilde{\mathcal{E}}$, where X_i are τ -vertical fields that satisfy the relations

$$D_{x^{i}}(X_{j}) - D_{x^{j}}(X_{i}) + [X_{i}, X_{j}] = 0, \quad 1 \le i < j \le n.$$
⁽²⁾

Let w^1, \ldots, w^r be local coordinates in the fiber of τ (the *nonlocal variables* in τ) and $X_i = X_i^1 \partial / \partial w^1 + \cdots + X_i^r \partial / \partial w^r$. Then $\tilde{\mathcal{E}}$, endowed with $\tilde{\mathcal{C}}$, is equivalent to the overdetermined system of PDEs

$$\frac{\partial w^{\alpha}}{\partial x^{i}} = X_{i}^{\alpha}, \quad i = 1, \dots, n, \; \alpha = 1, \dots, r, \tag{3}$$

compatible by virtue of \mathcal{E} .

Two coverings $\tau_i: \tilde{\mathcal{E}}_i \to \mathcal{E}, i = 1, 2$, are *equivalent* if there exists a diffeomorphism $f: \tilde{\mathcal{E}}_1 \to \tilde{\mathcal{E}}_2$ such that the diagram

is commutative and $f_* \circ \tilde{C}_Z^1 = \tilde{C}_Z^2$ for all fields Z on M, where \tilde{C}^i is the Cartan connection on $\tilde{\mathcal{E}}_i$ and f_* is the differential of f.

(1)

Download English Version:

https://daneshyari.com/en/article/1892775

Download Persian Version:

https://daneshyari.com/article/1892775

Daneshyari.com