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a b s t r a c t

This paper collects a number of open problems in the theory of integrable systems and
related fields, their study being suggested by themain lecturers and participants of the Ad-
vanced Course on Geometry and Dynamics of Integrable Systems, from September 9th to 14th
2013, as well as the Conference on Integrability, Topological Obstructions to Integrability and
Interplay with Geometry, from September 16th to 20th 2013, both held at the Centre de Re-
cercaMathematica in Barcelonawithin the Research Programme ‘‘Geometry andDynamics
of Integrable Systems’’.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The term ‘‘integrability’’ in geometry and mathematical physics is fairly overloaded. For a dynamical system, it means
in its broadest sense the existence of a certain, in general singular, foliation in the phase space by leaves which are invari-
ant under the flow of the system. For Hamiltonian systems, this translates to the existence of a family of first integrals –
i.e. functions that are constant along the trajectories of the system – which commute pairwise under the Poisson bracket.

Invariant foliations in phase space define restrictions on the possible evolution of the system. We have thus not only
integrability versus non-integrability, but a finite scale of integrability, measured by the dimension of the leaves or, when
dealing with a Hamiltonian system, the dimension of a space of commuting first integrals. If the number of first integrals is
maximal, the system is said to be completely integrable or integrable in the sense of Liouville.

Butwhy arewe looking for integrable dynamical systems? The ultimate goal is to understand the dynamics of the system.
In the strongest sense this means to solve – or ‘‘integrate’’, as one often says – the equations of motion explicitly. But the
meaning of ‘‘explicitly’’ is a rather philosophical question, as most of the ‘‘explicit’’ solutions are defined as solutions of their
defining differential equations. If we want to avoid such tautological solutions, we have to restrict the possible operations
we allow when we integrate an ordinary differential equation. This leads to integrability by quadratures.

Let us briefly recall the notion of integrability in its most frequently used sense: that of Liouville integrability. We also
take this opportunity to introduce common notations which will be used throughout the entire article.

Let (M, ω) be a symplectic manifold and let Xf be the Hamiltonian vector field corresponding to a function f : M → R,
defined by the formula iXf ω = −df . The canonical Poisson bracket between functions f , g is given by {f , g} = ω(Xf , Xg). A
Liouville integrable system is a collection ofm =

1
2dimM functions F1, F2, . . . , Fm whichmutually Poisson commute and are
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functionally independent almost everywhere. The Arnold–Liouville theorem [1] then assures the existence of a canonical
transformation such that the transformed Hamiltonian system can be integrated explicitly in terms of quadratures, at least
on an open dense subset. In mechanics and applications, one is mostly interested in a particular dynamical system given by
the flow of a vector field XH , where the Hamiltonian functions H describes a particular mechanical setting. Such a system is
Liouville integrable, if there exist functions F2, . . . , Fm which together with F1 = H constitute a Liouville integrable systems
as described above.

TheResearch Programme ‘‘Geometry andDynamics of Integrable Systems’’ [2], held at the Centre deRecercaMathemàtica
(CRM) in Barcelona, has brought together several expertsworking on different aspects of integrable systems. The following is
a collection of open problems proposed by themduring the Advanced Course on Geometry and Dynamics of Integrable Systems,
from September 9th to 14th 2013, and the subsequent Conference on Integrability, Topological Obstructions to Integrability and
Interplay with Geometry, from September 16th to 20th 2013.

The spectrum of problems presented here reflects the diversity of the Theory of Integrable Systems and the various
forms of integrable systems: In Section 2, Liouville integrable systems coming from two compatible Poisson structures
are considered. Section 3 is concerned with the extension of the definition of integrability to non-Hamiltonian systems. In
Section 4, integrable systems are regarded from thepoint of viewof their induced actions. Thenotion of Liouville integrability
for ordinary differential equations and its relation to classical Liouville integrability is at the center of Sections 5 and 6 deals
with the relations between integrability and dynamical complexity. Finally, in the last section, integrability is regarded for
certain non-holonomic systems.

Many other notions of integrability have been proposed, for example discrete, infinite dimensional or non-commutative
integrable systems, which are close to the present setting but shall not be discussed here.

2. Bi-Hamiltonian systems

Since the pioneeringwork ofMagri [3], the theory of bi-Hamiltonian systems and compatible Poisson brackets has gained
much interest. It has been observed that the integrability inmany classical Hamiltonian systems has a bi-Hamiltonian nature
and, on the other hand, the bi-Hamiltonian approach led to the construction of new examples of integrable Hamiltonian
systems, see the articles [4,5] and the references therein.

In Section 2.1, we will describe a purely linear-algebraic approach to compatible Poisson brackets that studies the
situation obtained by restricting the brackets to a point of themanifold. This approach already helps to understand the basic
principles underlying the theory of bi-Hamiltonian systems. Our consideration in this section follows closely the content
of [6,4,7]. In Section 2.2, we explain the open problems that appeared in this setting.

We will start with recalling some general facts on bi-Hamiltonian systems and compatible Poisson brackets. A Poisson
structure {., .} : C∞(M) × C∞(M) → C∞(M) on a manifold M can be written in the form {f , g} = A(df , dg), where A ∈

Γ (Λ2TM) is a skew-symmetric tensor field of type (2, 0) called the Poisson tensor. The Jacobi identity for {·, ·} is equivalent
to a nonlinear first order PDE system on the components of the tensor A. In case that the Poisson structure is the canonical
one corresponding to a symplectic structure, the Poisson tensor A is just given by the dual of the symplectic form but in
general, the natural mapping A : T ∗M → TM (given in local coordinates x1, . . . , xn by α = αidxi −→ Aijαi∂j) is degenerate.
Generalizing the definition from the symplectic setting, we can define the Hamiltonian vector field corresponding to a
function f onM by Xf = A(df ).

An integrable system on a Poisson manifoldM is a complete family of functions F in involution. Involutivity means that
the functions inF commutewith each otherwhilst completenessmeans thatF contains 1

2 (dimM+corank A) independent
functions, where corank A = dimM−rank A and the rank of A is defined by rank A = max{rank(Ax : T ∗

x M → TxM) : x ∈ M}.
Two Poisson structures {., .}A, {., .}B with corresponding Poisson tensors A, B are called compatible if their sum {f , g} =

{f , g}A + {f , g}B (and hence any linear combination) is again a Poisson structure. The only obstruction for compatibility is
thus that the sum satisfies the Jacobi identity. We now come to a very important example, that of compatible Lie–Poisson
structures, which also plays a crucial role in our open problems (see Sections 2.2.3 and 2.2.4).

Example 1 (Compatible Lie–Poisson Structures). Let g∗ be the dual of a finite-dimensional Lie algebra g with Lie bracket [., .].
The Poisson structure defined by

{f , g}(x) = ⟨x, [df (x), dg(x)]⟩,

for f , g ∈ C∞(g∗), x ∈ g∗, is called the standard Lie–Poisson structure. Here ⟨·, ·⟩ denotes the natural pairing between g∗ and
g and df (x), dg(x) : g∗

→ R are considered as elements of g. The value A(x) of the corresponding Poisson tensor A at a point
x ∈ g∗ is a 2-form on T ∗

x g∗ ∼= g given by A(x)(ξ , η) = ⟨x, [ξ, η]⟩.
For fixed a ∈ g∗, we define the constant Lie–Poisson bracket

{f , g}a(x) = ⟨a, [df (x), dg(x)]⟩

with constant Poisson tensor Aa whose value at x is given by the constant tensor Aa(x)(ξ , η) = ⟨a, [ξ, η]⟩. This bracket is
compatible with the standard Lie–Poisson bracket from above.
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