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a b s t r a c t

With every matching in a graph we associate a group called the matching group. We study
this group using the theory of nonpositively curved cubed complexes. Our approach is
formulated in terms of the so-called gliding systems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Consider a graph Γ without loops but possibly with multiple edges. A matching A in Γ is a set of edges of Γ such that
different edges in A have no common vertices. Matchings are extensively studied in graph theory usually with the view to
define numerical invariants of graphs. In this paper we study transformations of matchings determined by even cycles. An
even cycle inΓ is an embedded circle inΓ formed by an even number of edges. If amatching Ameets an even cycle s at every
second edge of s, then removing these edges from A and adding instead all the other edges of s we obtain a new matching
denoted sA. We say that sA is obtained from A by gliding along s. The inverse transformation is the gliding of sA along swhich,
obviously, gives back A. Composing the glidings, we can pass back and forth betweenmatchings. If two even cycles s, t have
no common vertices and a matching A meets both s and t at every second edge, then the compositions A → sA → tsA and
A → tA → stA = tsA are considered as the same transformation. For any matching A in Γ , the compositions of glidings
carrying A to itself form a group πA = πA(Γ ) called the matching group. Similar groups were first considered in [1] in the
context of domino tilings of planar regions.

In the rest of the introduction, we focus on the matching groups in finite graphs. We prove that they are torsion-free,
residually nilpotent, residually finite, biorderable, biautomatic, have solvable word and conjugacy problems, satisfy the Tits
alternative, embed in SLn(Z) for some n, and embed in finitely generated right-handed Artin groups. Our main tool in the
proof of these properties is an interpretation of the matching groups as the fundamental groups of nonpositively curved
cubed complexes. The universal coverings of such complexes are Cartan–Alexandrov–Toponogov (0)-spaces in the sense of
Gromov (CAT(0)-spaces). All necessary definitions from the theory of cubed complexes are recalled in the paper.
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Using much more elementary considerations, we give a presentation of the matching group by generators and relations
as follows. The set of vertices of a finite graph Γ adjacent to the edges of a matching A in Γ is denoted ∂A. We say that two
matchings A, B in Γ are congruent if ∂A = ∂B. We explain that any tuple of matchings in Γ congruent to a given matching
A0 determines an element in πA0 . The group πA0 is generated by the elements {xA,B}A,B associated with the 2-tuples A, B of
matchings congruent to A0. The defining relations: xA0,A = 1 for any A congruent to A0 and xA,C = xA,B xB,C for anymatchings
A, B, C congruent to A0 such that every vertex in ∂A0 is incident to an edge which belongs to at least two of the matchings
A, B, C . As a consequence, the group πA0 is finitely generated and its rank is smaller than or equal to M(M − 1)/2 where M
is the number of matchings in Γ congruent to A0 and distinct from A0.

We define two families of natural homomorphisms between matching groups. First, any subset A′ of a matching A in Γ
is itself a matching in Γ . We define a canonical injection πA′ ↩→ πA. Identifying πA′ with its image, one can treat πA′ as a
subgroup of πA. Second, any two congruent matchings A, B in Γ may be related by glidings, and, as a consequence, their
matching groups are isomorphic. We exhibit a canonical isomorphism πA ≈ πB. We also relate the matching groups to
the braid groups of graphs. This allows us to derive braids in graphs from tuples of matchings. We will briefly discuss a
generalization of the matching groups to hypergraphs.

A special role in the theory of matchings is played by perfect matchings also called dimer coverings. A matching in a
graph is perfect if every vertex of the graph is incident to a (unique) edge of this matching. Perfect matchings have been
extensively studied in connection with exactly solvable models of statistical mechanics and with path algebras, see [2,3]
and references therein. The matching groups associated with perfect matchings are called dimer groups. Since all perfect
matchings in a finite graph are congruent, their dimer groups are isomorphic. The resulting isomorphism class of groups is
an invariant of the graph.

The study of glidings suggests a more general framework of gliding systems in groups. A gliding system in a group G
consists of certain elements of G called glides and a relation on the set of glides called independence satisfying a few axioms.
Given a gliding system in G and a set D ⊂ G, we construct a cubed complex XD called the glide complex. The fundamental
groups of the components of XD are the glide groups. We formulate conditions ensuring that XD is nonpositively curved.
One can view gliding systems as devices producing nonpositively curved complexes and interesting groups. The matching
groups and, in particular, the dimer groups are instances of glide groups for appropriate G and D .

The paper is organized as follows. In Section 2 we recall the basics on cubed complexes and cubic maps. The next
three sections deal with glidings: we define the gliding systems (Section 3), construct the glide complexes (Section 4),
and study natural maps between the glide groups (Section 5). Next, we introduce dimer groups (Section 6), compute them
via generators and relations (Section 7), and define and study the matching groups (Section 8). In Section 9 we consider
connections with braid groups. In Section 10 we interpret the dimer complex in terms of graph labelings. In Section 11
we discuss the matching groups of hypergraphs. In the appendix we examine the typing homomorphisms of the matching
groups.

2. Preliminaries on cubed complexes and cubical maps

We discuss the basics of the theory of cubed complexes and cubical maps, see [4], Chapters I.7 and II.5 for more details.

2.1. Cubed complexes

Set I = [0, 1]. A cubed complex is a CW-complex X such that each (closed) k-cell of X with k ≥ 0 is a continuousmap from
the k-dimensional cube Ik to X whose restriction to the interior of Ik is injective and whose restriction to each (k − 1)-face
of Ik is an isometry of that face onto Ik−1 composed with a (k − 1)-cell Ik−1

→ X of X . The k-cells Ik → X are not required
to be injective. The k-skeleton X (k) of X is the union of the images of all cells of dimension ≤ k.

For example, the cube Ik together with all its faces is a cubed complex. So is the k-dimensional torus obtained by
identifying opposite faces of Ik.

The link LK(A) = LK(A; X) of a 0-cell A of a cubed complex X is the space of all directions at A. Each triple (k ≥ 1, a vertex
a of Ik, a k-cell α : Ik → X of X carrying a to A) determines a (k − 1)-dimensional simplex in LK(A) in the obvious way. The
faces of this simplex are determined by the restrictions of α to the faces of Ik containing a. The simplices corresponding to
all triples (k, a, α) cover LK(A) but may not form a simplicial complex. We say, following [5], that the cubed complex X is
simple if the links of all A ∈ X (0) are simplicial complexes, i.e., all simplices in LK(A) are embedded and the intersection of
any two simplices in LK(A) is a common face.

A flag complex is a simplicial complex such that any finite collection of pairwise adjacent vertices spans a simplex. A
cubed complex is nonpositively curved if it is simple and the link of each 0-cell is a flag complex. A theorem of M. Gromov
asserts that the universal covering of a connected finite-dimensional nonpositively curved cubed complex is a CAT(0)-space.
Since CAT(0)-spaces are contractible, all higher homotopy groups of such a complex X vanish while the fundamental group
π = π1(X) is torsion-free. This group satisfies a strong form of the Tits alternative: each subgroup of π contains a rank 2
free subgroup or virtually is a finitely generated abelian group, see [6]. Also, π does not have Kazhdan’s property (T), see [7].
If X is compact, then π has solvable word and conjugacy problems and is biautomatic, see [8].
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