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a b s t r a c t

In this paper, we analyze the stability of the real-valued Maxwell–Bloch equations with a
control that depends on state variables quadratically. We also investigate the topological
properties of the energy-Casimir map, as well as the existence of periodic orbits and
explicitly construct the heteroclinic orbits.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The description of the interaction between laser light and a material sample composed of two-level atoms begins with
Maxwell’s equations of the electric field and Schrödinger’s equations for the probability amplitudes of the atomic levels. The
resulting dynamics is given by Maxwell–Schrödinger equations which have Hamiltonian formulation and moreover there
exists a homoclinic chaos [8].

Using the Melnikov method [14], in [9] the presence of special homoclinic orbits for the dynamics of an ensemble of
two-level atoms in a single-mode resonant laser cavity with external pumping and a weak coherent probe modeled by
Maxwell–Bloch’s equations with a probe was established.

Fordy and Holm [7] discussed the phase space geometry of the solutions of the system introduced by Holm and
Kovacic [8].

In 1992, David and Holm [6] presented the phase space geometry of the mentioned system restricted to R, so named
real-valued Maxwell–Bloch equations:ẋ = y

ẏ = xz
ż = −xy.

(1)

In 1996, Puta [18] considered system (1) with a linear, respectively a quadratic control u about Oy axis:ẋ = y
ẏ = xz + u
ż = −xy.

(2)
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These particular perturbations arise naturally in controllability context andwere analyzed from the dynamical point of view.
More precisely, in the case of the quadratic control u = (k − 1)xz with the parameter k > 0 [18], the dynamical analysis
is done by proving that the restricted dynamics on each symplectic leaf of the associated Poisson configuration manifold is
equivalent to the dynamics of the Duffing oscillator with control and with the pendulum dynamics.

In our work, we consider system (2), where u = (k − 1)xz with k < 0. We give a Poisson structure and we find a
symplectic realization of the system. Using the method introduced in [20], we find the image of the energy-Casimir map
and we study the topology of the fibers of the energy-Casimir map.

For details on the Poisson geometry and the Hamiltonian mechanical system, see, e.g. [5,13,17,12].

2. Poisson structure, symplectic realization and geometric prequantization

Considering the quadratic parametric control u = (k − 1)xz, system (2) becomes:ẋ = y
ẏ = kxz
ż = −xy,

(3)

where k < 0 is the tuning parameter, according to the classification of chaos control methods [3,4].
The constants of motion

Hk(x, y, z) =
1
2
(y2 + kz2), C(x, y, z) =

1
2
x2 + z

were given in [18]. Using the Euclidean space R3 with a modified cross-product as a Lie algebra, a Poisson structure Π ,

Π =

 0 1 0
−1 0 x
−0 −x 0


was also given.

We are going to give a Lie algebra, isomorphic with that mentioned above, on its dual space the same Poisson structure
is obtained.

Let us consider the Heisenberg Lie group H3,

H3 =


A ∈ GL(3, R)| A =

1 a c
0 1 b
0 0 1


, a, b, c ∈ R


.

The corresponding Lie algebra h3 is

h3 =


X ∈ gl(3, R)| X =

0 a c
0 0 b
0 c 0


, a, b, c ∈ R


.

Note that, as a real vector space, h3 is generated by the base Bh3 = {E1, E2, E3}, where

E1 =

0 0 1
0 0 0
0 0 0


, E2 =

0 1 0
0 0 0
0 0 0


, E3 =

0 0 0
0 0 1
0 0 0


.

The following bracket relations [E1, E2] = 0, [E1, E3] = 0, [E2, E3] = E1, hold.
Following [12], it is easy to see that the bilinear map Θ : h3 × h3 → R given by the matrix (Θij)1≤i,j≤3, Θ12 = −Θ21 = 1

and 0 otherwise, is a 2-cocycle on h3 and it is not a coboundary since Θ(E1, E2) = 1 ≠ 0 = f ([E1, E2]), for every linear map
f , f : h3 → R.

On the dual space h∗

3 ≃ R3, a modified Lie–Poisson structure is given in coordinates by

Π =

0 0 0
0 0 x
0 −x 0


+

 0 1 0
−1 0 0
0 0 0


=

 0 1 0
−1 0 x
0 −x 0


.

The function Hk is the Hamiltonian and C is a Casimir of our configuration.
The next proposition states that system (3) can be regarded as a Hamiltonian mechanical system.

Proposition 1. The Hamilton–Poisson mechanical system (R3, Π,Hk) has a full symplectic realization (R4, ω, H̃k), where

ω = dp1 ∧ dq1 + dp2 ∧ dq2

and

H̃k =
1
2


p21 + kp22 − kp2q21 +

k
4
q41


.
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