Twisted stacked central configurations for the spatial seven-body problem

Xia Su ${ }^{\text {a,b,* }}$, Tianqing $A n^{\text {a }}$
${ }^{\text {a }}$ College of Science, Hohai University, Nanjing 210098, China
${ }^{\mathrm{b}}$ Faculty of Mathematics and Physics, Huaiyin Institute of Technology, Huai'an 223003, China

A R T I C L E I N F O

Article history:

Received 30 December 2012
Received in revised form 23 March 2013
Accepted 23 March 2013
Available online 1 April 2013

MSC:

34C15
34C25
Keywords:
Seven-body problem
Stacked central configuration
Celestial mechanics

Abstract

In this paper, we show the existence of the twisted stacked central configurations for 7 -body problem. More precisely, the position vectors x_{1}, x_{2}, x_{3} and x_{4} are at the vertices of a regular tetrahedron Σ; the position vectors x_{5}, x_{6} and x_{7} are at the vertices of an equilateral triangle Π; the triangle (x_{1}, x_{2}, x_{3}) and the triangle (x_{5}, x_{6}, x_{7}) have twisted angle $\frac{\pi}{3}$.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and main results

The classical n-body problem concerns with the motion of n mass points moving in space according to Newton's second law and the gravitational law:

$$
\begin{equation*}
m_{i} \ddot{x}_{i}=\sum_{k \neq i} \frac{m_{k} m_{i}\left(x_{k}-x_{i}\right)}{\left|x_{k}-x_{i}\right|^{3}}, \quad i=1,2, \ldots, n . \tag{1.1}
\end{equation*}
$$

Here $x_{i} \in \mathbb{R}^{3}$ is the position of mass $m_{i}>0$. Alternatively, system (1.1) can be rewritten as

$$
\begin{equation*}
m_{i} \ddot{x}_{i}=\frac{\partial U(x)}{\partial x_{i}}, \quad i=1,2, \ldots, n \tag{1.2}
\end{equation*}
$$

where

$$
\begin{equation*}
U(x)=U\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leq k<j \leq n} \frac{m_{k} m_{j}}{\left|x_{k}-x_{j}\right|} \tag{1.3}
\end{equation*}
$$

is the Newtonian potential of system (1.1). The position vector $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in\left(\mathbb{R}^{3}\right)^{n}$ is often referred to the configuration of the system; the vectors $x_{i}(i=1,2, \ldots, n)$ are vertices of the configuration x.

[^0]Let $M=m_{1}+\cdots+m_{n}$ be the total mass and

$$
c=\frac{1}{M}\left(m_{1} x_{1}+\cdots+m_{n} x_{n}\right)
$$

be the center of mass of the configuration x. Because the potential is singular when two particles have the same position, it is natural to assume that the configuration avoids the set

$$
\Delta=\left\{x \in\left(\mathbb{R}^{3}\right)^{n}: x_{i}=x_{j} \text { for some } i \neq j\right\}
$$

A configuration $x=\left(x_{1}, \ldots, x_{n}\right) \in\left(\mathbb{R}^{3}\right)^{n} \backslash \Delta$ is called a central configuration if there exists some positive constant λ, called the multiplier, such that

$$
\begin{equation*}
-\lambda\left(x_{i}-c\right)=\sum_{j=1, j \neq i}^{n} \frac{m_{j}\left(x_{j}-x_{i}\right)}{\left|x_{j}-x_{i}\right|^{3}}, \quad i=1,2, \ldots, n \tag{1.4}
\end{equation*}
$$

It is easy to see that a central configuration remains a central configuration after a rotation in \mathbb{R}^{3} and a scalar multiplication. More precisely, let $A \in S O(3)$ and $a>0$, if $x=\left(x_{1}, \ldots, x_{n}\right)$ is a central configuration, so are $A x=\left(A x_{1}, A x_{2}, \ldots, A x_{n}\right)$ and $a x=\left(a x_{1}, a x_{2}, \ldots, a x_{n}\right)$.

Two central configurations are said to be equivalent if one can be transformed to another by a scalar multiplication and a rotation. In this paper, when we say a central configuration, we mean a class of central configurations as defined by the above equivalence relation.

The study of central configuration goes back to Euler and Lagrange. For $n=3$, it is a classical result there are three collinear, called Euler, central configurations and one equilateral triangular, called Lagrange, central configurations. For $n=4$, Moulton [1] proved that there is exactly one collinear central configuration for each arrangement of the mass points on the line.

There are several reasons why central configurations are of special importance in the study of the n-body problem; see [2-4] for details.

A stacked central configuration is a central configuration in which a proper subset of the n bodies is already on a central configuration. This class of central configuration of 5-body problem was introduced by Hampton in [5]. The work of [5] was complemented by Llibre in [6,7].

Zhang and Zhou [8] showed the existence of double pyramidal central configurations of $N+2$-body problem. Hampton and Santoprete [9] provided some examples of stacked central configurations for the spatial 7-body problem where the bodies are arranged as concentric three and two dimensional simplex.

Mello and Fernandes [10] provided new examples of stacked central configuration for spatial 7-body problem where the four bodies are at the vertices of a regular tetrahedron and the other three bodies are located at the vertices of an equilateral triangle in the exterior of regular tetrahedron. In this paper, we show the existence of the twisted stacked central configurations of the 7-body problem. The spatial central configuration considered here satisfies (see Fig. 1): the position vectors x_{1}, x_{2}, x_{3} and x_{4} are at the vertices of a regular tetrahedron Σ; the position vectors x_{5}, x_{6} and x_{7} are at the vertices of an equilateral triangle Π; the triangle (x_{1}, x_{2}, x_{3}) and the triangle (x_{5}, x_{6}, x_{7}) have twisted angle $\frac{\pi}{3}$.

Without loss of generality, we can assume that

$$
\begin{align*}
& x_{1}=(1,0,0), \quad x_{2}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right), \quad x_{3}=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}, 0\right), \quad x_{4}=(0,0, \sqrt{2}), \\
& x_{5}=\left(\frac{1}{2} x, \frac{\sqrt{3}}{2} x, z\right), \quad x_{6}=(-x, 0, z), \quad x_{7}=\left(\frac{1}{2} x,-\frac{\sqrt{3}}{2} x, z\right), \tag{1.5}
\end{align*}
$$

where $x>0$ is the radius of the circle that contains the equilateral triangle Π and $z \in \mathbb{R}$ is the signed distance between the plane that contains x_{1}, x_{2} and x_{3} and the plane that contains Π.

The main results of this paper are the following.
Theorem 1.1. According to Fig. 1, in order that the seven mass points are in a central configuration, the following statements are necessary:

1. The masses m_{1}, m_{2} and m_{3} must be equal.
2. The masses m_{5}, m_{6} and m_{7} must be equal.

Theorem 1.2. There exist points $P_{0}\left(x_{0}, y_{0}\right) \in T^{-1}(0) \cap D_{1}$ such that the seven bodies take the coordinates

$$
\begin{aligned}
& x_{1}=(1,0,0), \quad x_{2}=\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}, 0\right), \quad x_{3}=\left(-\frac{1}{2},-\frac{\sqrt{3}}{2}, 0\right), \quad x_{4}=(0,0, \sqrt{2}), \\
& x_{5}=\left(\frac{1}{2} x_{0}, \frac{\sqrt{3}}{2} x_{0}, z_{0}\right), \quad x_{6}=\left(-x_{0}, 0, z_{0}\right), \quad x_{7}=\left(\frac{1}{2} x_{0},-\frac{\sqrt{3}}{2} x_{0}, z_{0}\right) .
\end{aligned}
$$

Then there are positive solutions of m_{1}, m_{4}, m_{5} such that these bodies form a spatial central configuration according to Fig. 1.

https://daneshyari.com/en/article/1892897

Download Persian Version:

https://daneshyari.com/article/1892897

Daneshyari.com

[^0]: * Corresponding author at: College of Science, Hohai University, Nanjing 210098, China. Tel.: +86 15152359290.

 E-mail address: sxdch2004@yahoo.com.cn (X. Su).
 0393-0440/\$ - see front matter © 2013 Elsevier B.V. All rights reserved.
 http://dx.doi.org/10.1016/j.geomphys.2013.03.026

