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1. Introduction

Frobenius manifolds are manifolds with a flat metric and a multiplication in the tangent sheaf, subject to some
constraints. Frobenius manifolds were introduced by Dubrovin in [1,2] as a mathematical framework for deformations
of topological quantum field theories (see also [3]). In mathematics Frobenius manifolds arise in two different situations,
corresponding to A-models and B-models in physics. In an A-model one counts rational curves on a variety; this is also
known as Gromov-Witten invariants. The generating function for these invariants is the potential for the corresponding
Frobenius manifold.

This paper is concerned with B-models. In a B-model one studies deformations of a certain complex structure (formal or
analytic). The best known examples are extended moduli spaces of Calabi-Yau varieties [4] and the unfoldings of isolated
singularities [5] (see [6] for an exposition). We would like to mention that Frobenius structures are important for mirror
symmetry: if two varieties are mirror dual to each other, then the A-model Frobenius manifold, corresponding to the first
variety, is isomorphic to the B-model Frobenius manifold, corresponding to the second.

1.1. Moduli spaces of abelian integrals

Examples of Frobenius manifolds are furnished by Hurwitz spaces. Hurwitz spaces parameterize pairs (X, f), where X is
a smooth complete algebraic curve, f : X — P'. Dubrovin constructed Frobenius structures on Hurwitz spaces [3].

Our main object is the following deformation of a Hurwitz space: a space of pairs (X, f), where f is a multi-valued function
such that df is a single-valued meromorphic 1-form with prescribed periods and residues. If the periods and residues are
equal to zero, then this space is a Hurwitz space. Our spaces will be called spaces of abelian integrals.

Krichever constructs in [7,10] Frobenius structures on the universal covers of the spaces of abelian integrals. Our main
goal is to give a coordinate-free geometric description of these Frobenius structures. We also generalize the setup to the

E-mail address: fedorov@bu.edu.

0393-0440/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.geomphys.2010.10.015


http://dx.doi.org/10.1016/j.geomphys.2010.10.015
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
mailto:fedorov@bu.edu
http://dx.doi.org/10.1016/j.geomphys.2010.10.015

486 R.M. Fedorov / Journal of Geometry and Physics 61 (2011) 485-497

case of multiple poles and non-zero residues in Section 5. In particular, our generalization covers the previously untreated
case of abelian integrals of the third kind. Our approach is based on a D-module push-forward (also known as twisted de
Rham complex; see [6, Section 1.3.3]). It turns out that these structures of Frobenius manifolds have a nice interpretation: the
tangent sheaf multiplication has a cohomological origin, similar to that of [4]. The metric and the Levi-Civita connection are
closely related to one-dimensional isomonodromic deformation. (This is not directly related to isomonodromic deformations
used to describe the semi-simple Frobenius manifolds.)

We are using the approach to Frobenius structures via primitive forms. This has been invented by Saito [5]. We would like
to mention a striking similarity between three constructions of Frobenius structures: on the universal unfolding of isolated
singularity [5], on the extended moduli space of Calabi-Yau varieties [4], and our construction. In each case a pencil of
connections is obtained by the (derived) direct image. Our case is, in some sense, intermediate: on the one hand, singularities
are present, on the other hand, our structure is not local, it depends on the global geometry of a curve. This is why we
hope that, generalizing our construction to higher dimension, we shall provide a bridge between the pictures of Saito and
Barannikov-Kontsevich, giving a unified approach to B-model Frobenius manifolds.

Another interesting feature of our construction is that we get a family of Frobenius manifolds parameterized by the
periods of abelian integrals. We also want to emphasize that there are some new features specific for the higher genus case:
to get a Frobenius structure we need to make a modification of the direct image (see Section 3.3).

2. Preliminaries and the main construction

2.1. Pencils of connections

Definition 1. Let p; : M x P! — M be the natural projection, where M is a manifold. By a pencil of connections on M we
mean a pair (W, V), where W — M is a vector bundle, V is a relative flat connection on 'V = p{W along M with a simple
pole along M x {0}.

One interprets a pencil as a family of flat connections on ‘W, parameterized by P! \ 0. The condition on the pole implies
that this family is of the form V, + ®/z, this is why it is called “pencil” (here z is a coordinate on P'). There is a natural
way to construct twisted Frobenius manifold structures on dense open subsets of M starting from a pencil of connections,
provided this pencil of connections satisfies some non-degeneracy condition (and, conversely, every Frobenius manifold
gives rise to a pencil of connections). This will be explained in detail in Section 4.1.

2.2. Main objects

Consider a smooth complete algebraic curve X of genus g over C, let p € X. Denote by ()A(, p) the maximal abelian cover
of (X, p).

Definition 2. An abelian integral on (X, p) is a function f on X such that df descends to a meromorphic differential on X. We
define periods of f to be those of df.

Remarks. (1) An abelian integral can be thought as an integral of a meromorphic form on X. Thus the space of abelian
integrals is a one-dimensional affine bundle over the vector bundle of differential forms.

(2) One can avoid working with abelian integrals by fixing a point pg € X. Then the affine bundle trivializes, a section
being the space of abelian integrals that vanish at pg, see also Section 5.

To simplify notation, we shall assume first that df has a single pole. We outline the changes needed in the multi-pole
case in Section 5.

Letn > 1be aninteger. Consider the moduli space Ag , of triples (X, p, f), where (X, p) is as above, f is an abelian integral
with a single pole of order exactly n at p (in other words, df is a meromorphic form on X with the only pole at p of order
n+1).

The periods of f give a linear map H;(X, Z) — C. One can identify groups H;(X, Z) locally over the moduli space of
curves using the Gauss-Manin connection, therefore the periods give rise to a foliation on Ag ;. Let us fix one of the leaves
and denote its smooth locus by A. Thus, roughly speaking, A parameterizes abelian integrals with prescribed periods.

Let A be the moduli space of quadruples (X, p, f, A), where (X, p, f) € A, A is a subgroup of H{ (X, Z) maximal isotropic
with respect to the intersection form. The elements of A will be called a-cycles. Clearly, A is a cover of A. Our main result is
the following

Theorem. (a) There is a natural pencil of connections on A
(b) This pencil of connections gives rise to a twisted Frobenius structure on A.
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