Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Frobenius manifold structures on the spaces of abelian integrals

Roman M. Fedorov

Department of Mathematics and Statistics, Boston University, 111 Cummington St, Boston, MA, 02215, United States

ARTICLE INFO

Article history: Received 30 April 2010 Received in revised form 14 September 2010 Accepted 22 October 2010 Available online 30 October 2010

Keywords: Frobenius manifolds Abelian integrals Moduli spaces D-modules Isomonodromic deformation

1. Introduction

ABSTRACT

Frobenius manifold structures on the spaces of abelian integrals were constructed by I. Krichever. We use \mathcal{D} -modules, deformation theory, and homological algebra to give a coordinate-free description of these structures. It turns out that the tangent sheaf multiplication has a cohomological origin, while the Levi-Civita connection is related to one-dimensional isomonodromic deformations.

© 2010 Elsevier B.V. All rights reserved.

Frobenius manifolds are manifolds with a flat metric and a multiplication in the tangent sheaf, subject to some constraints. Frobenius manifolds were introduced by Dubrovin in [1,2] as a mathematical framework for deformations of topological quantum field theories (see also [3]). In mathematics Frobenius manifolds arise in two different situations, corresponding to A-models and B-models in physics. In an A-model one counts rational curves on a variety; this is also known as Gromov–Witten invariants. The generating function for these invariants is the potential for the corresponding Frobenius manifold.

This paper is concerned with B-models. In a B-model one studies deformations of a certain complex structure (formal or analytic). The best known examples are extended moduli spaces of Calabi–Yau varieties [4] and the unfoldings of isolated singularities [5] (see [6] for an exposition). We would like to mention that Frobenius structures are important for mirror symmetry: if two varieties are mirror dual to each other, then the A-model Frobenius manifold, corresponding to the first variety, is isomorphic to the B-model Frobenius manifold, corresponding to the second.

1.1. Moduli spaces of abelian integrals

Examples of Frobenius manifolds are furnished by Hurwitz spaces. Hurwitz spaces parameterize pairs (X, f), where X is a smooth complete algebraic curve, $f : X \to \mathbb{P}^1$. Dubrovin constructed Frobenius structures on Hurwitz spaces [3].

Our main object is the following deformation of a Hurwitz space: a space of pairs (X, f), where f is a multi-valued function such that df is a single-valued meromorphic 1-form with prescribed periods and residues. If the periods and residues are equal to zero, then this space is a Hurwitz space. Our spaces will be called *spaces of abelian integrals*.

Krichever constructs in [7,10] Frobenius structures on the universal covers of the spaces of abelian integrals. Our main goal is to give a coordinate-free geometric description of these Frobenius structures. We also generalize the setup to the

E-mail address: fedorov@bu.edu.

^{0393-0440/\$ –} see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.geomphys.2010.10.015

case of multiple poles and non-zero residues in Section 5. In particular, our generalization covers the previously untreated case of abelian integrals of the third kind. Our approach is based on a \mathcal{D} -module push-forward (also known as twisted de Rham complex; see [6, Section 1.3.3]). It turns out that these structures of Frobenius manifolds have a nice interpretation: the tangent sheaf multiplication has a cohomological origin, similar to that of [4]. The metric and the Levi-Civita connection are closely related to one-dimensional isomonodromic deformation. (This is not directly related to isomonodromic deformations used to describe the semi-simple Frobenius manifolds.)

We are using the approach to Frobenius structures via primitive forms. This has been invented by Saito [5]. We would like to mention a striking similarity between three constructions of Frobenius structures: on the universal unfolding of isolated singularity [5], on the extended moduli space of Calabi–Yau varieties [4], and our construction. In each case a pencil of connections is obtained by the (derived) direct image. Our case is, in some sense, intermediate: on the one hand, singularities are present, on the other hand, our structure is not local, it depends on the global geometry of a curve. This is why we hope that, generalizing our construction to higher dimension, we shall provide a bridge between the pictures of Saito and Barannikov–Kontsevich, giving a unified approach to B-model Frobenius manifolds.

Another interesting feature of our construction is that we get a *family* of Frobenius manifolds parameterized by the periods of abelian integrals. We also want to emphasize that there are some new features specific for the higher genus case: to get a Frobenius structure we need to make a modification of the direct image (see Section 3.3).

2. Preliminaries and the main construction

2.1. Pencils of connections

Definition 1. Let $p_1 : \mathbf{M} \times \mathbb{P}^1 \to \mathbf{M}$ be the natural projection, where **M** is a manifold. By a *pencil of connections* on **M** we mean a pair (\mathcal{W}, ∇) , where $\mathcal{W} \to \mathbf{M}$ is a vector bundle, ∇ is a relative flat connection on $\mathcal{V} = p_1^* \mathcal{W}$ along **M** with a simple pole along $\mathbf{M} \times \{0\}$.

One interprets a pencil as a family of flat connections on W, parameterized by $\mathbb{P}^1 \setminus 0$. The condition on the pole implies that this family is of the form $\nabla_{\infty} + \Phi/z$, this is why it is called "pencil" (here *z* is a coordinate on \mathbb{P}^1). There is a natural way to construct twisted Frobenius manifold structures on dense open subsets of **M** starting from a pencil of connections, provided this pencil of connections satisfies some non-degeneracy condition (and, conversely, every Frobenius manifold gives rise to a pencil of connections). This will be explained in detail in Section 4.1.

2.2. Main objects

Consider a smooth complete algebraic curve *X* of genus *g* over \mathbb{C} , let $p \in X$. Denote by (\hat{X}, \hat{p}) the maximal abelian cover of (X, p).

Definition 2. An *abelian integral* on (X, p) is a function f on \hat{X} such that df descends to a meromorphic differential on X. We define *periods* of f to be those of df.

Remarks. (1) An abelian integral can be thought as an integral of a meromorphic form on *X*. Thus the space of abelian integrals is a one-dimensional affine bundle over the vector bundle of differential forms.

(2) One can avoid working with abelian integrals by fixing a point $p_0 \in \hat{X}$. Then the affine bundle trivializes, a section being the space of abelian integrals that vanish at p_0 , see also Section 5.

To simplify notation, we shall assume first that df has a single pole. We outline the changes needed in the multi-pole case in Section 5.

Let $n \ge 1$ be an integer. Consider the moduli space $\mathbf{A}_{g,n}$ of triples (X, p, f), where (X, p) is as above, f is an abelian integral with a single pole of order exactly n at p (in other words, df is a meromorphic form on X with the only pole at p of order n + 1).

The periods of f give a linear map $H_1(X, \mathbb{Z}) \to \mathbb{C}$. One can identify groups $H_1(X, \mathbb{Z})$ locally over the moduli space of curves using the Gauss–Manin connection, therefore the periods give rise to a foliation on $\mathbf{A}_{g,n}$. Let us fix one of the leaves and denote its smooth locus by \mathbf{A} . Thus, roughly speaking, \mathbf{A} parameterizes abelian integrals with prescribed periods.

Let $\hat{\mathbf{A}}$ be the moduli space of quadruples (X, p, f, Δ) , where $(X, p, f) \in \mathbf{A}$, Δ is a subgroup of $H_1(X, \mathbb{Z})$ maximal isotropic with respect to the intersection form. The elements of Δ will be called *a*-cycles. Clearly, $\hat{\mathbf{A}}$ is a cover of \mathbf{A} . Our main result is the following

Theorem. (a) There is a natural pencil of connections on Â.
(b) This pencil of connections gives rise to a twisted Frobenius structure on Â.

Download English Version:

https://daneshyari.com/en/article/1893122

Download Persian Version:

https://daneshyari.com/article/1893122

Daneshyari.com