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a b s t r a c t

In this paper, we derive gradient estimates for Dirac-harmonic maps from complete
Riemannian spin manifolds into regular balls in Riemannian manifolds. With these esti-
mates, we can prove Liouville theorems for Dirac-harmonic maps under curvature or en-
ergy conditions.
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1. Introduction

Dirac-harmonic maps have been introduced in [1,2]. They couple a harmonic map type field with a spinor field [3].
This model originated in the supersymmetric σ -model of quantum field theory, the only difference being that in the
supersymmetric σ -model the (anticommuting) spinor fields take values in a Grassmannian algebra, making the model
supersymmetric, while in Dirac-harmonic maps, the spinors are commuting as in spin geometry, keeping the model within
the category of the geometric calculus of variations.

Let us recall the terminology and setting for Dirac-harmonic maps. Let (Mm, g) be a Riemannian spin manifold of
dimension m ≥ 2 with a fixed spin structure, and ΣM the spinor bundle over M , on which we chose a Hermitian metric
⟨·, ·⟩. The Levi-Civita connection ∇ on ΣM is compatible with ⟨·, ·⟩. Let (Nn, h) be a Riemannian manifold of dimension
n,Φ a map from M to N , and Φ−1TN the pull-back bundle of TN by Φ . On the twisted bundle ΣM ⊗ Φ−1TN there is a
metric (still denoted by ⟨·, ·⟩) induced from the metrics on ΣM and Φ−1TN . There is also a connection, still denoted by ∇ ,
onΣM ⊗ Φ−1TN naturally induced from those onΣM andΦ−1TN .

Locally, we canwrite a cross-sectionΨ ofΣM⊗Φ−1TN asΨ = ψα
⊗θα , where {ψα} are local cross-sections ofΣM, {θα}

are local cross-sections ofΦ−1TN . Here and in the sequel, we use the usual summation convention.
The Dirac operator along the mapΦ is defined as

̸DΨ := ei · ∇eiΨ

= ̸∂ψα
⊗ θα + ψα

⊗ ∇eiθα,

∗ Corresponding author at: School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.
E-mail addresses: qunchen@whu.edu.cn (Q. Chen), jost@mis.mpg.de (J. Jost), sunll101@whu.edu.cn (L. Sun).

0393-0440/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.geomphys.2013.10.011

http://dx.doi.org/10.1016/j.geomphys.2013.10.011
http://www.elsevier.com/locate/jgp
http://www.elsevier.com/locate/jgp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomphys.2013.10.011&domain=pdf
mailto:qunchen@whu.edu.cn
mailto:jost@mis.mpg.de
mailto:sunll101@whu.edu.cn
http://dx.doi.org/10.1016/j.geomphys.2013.10.011


Q. Chen et al. / Journal of Geometry and Physics 76 (2014) 66–78 67

where {ei} is a local orthonormal basis on M, ̸∂ := ei · ∇ei is the usual Dirac operator on M and ‘‘X ·’’ stands for the Clifford
multiplication by the vector field X onM .

Consider the functional

L(Φ,Ψ ) =
1
2


M


∥dΦ∥

2
+ ⟨Ψ , ̸DΨ ⟩


.

The critical points (Φ,Ψ ) satisfy the Euler–Lagrange equations for L(Φ,Ψ ) are (cf. [1])τ(Φ) =
1
2
⟨ψα, ei · ψβ

⟩RN(θα, θβ)Φ∗(ei),

̸DΨ = 0,
(1.1)

where RN(X, Y ) := [∇
N
X ,∇

N
Y ] − ∇

N
[X,Y ]

,∀X, Y ∈ Γ (TN) stands for the curvature operator of N , and τ(Φ) := (∇T∗M⊗Φ−1TN
ei

dΦ)(ei) is the tension field ofΦ . Therefore, solutions of (1.1) are called Dirac-harmonic maps from M to N .
Dirac-harmonic maps have been investigated under various aspects, see the recent article [4] and the references therein.

In [4], a maximum principle of Jäger–Kaul type [5] was established for Dirac-harmonic maps from compact Riemannian
spin manifolds with mean convex boundaries and positive scalar curvatures into certain geodesic balls of the target
manifolds, based on which a general existence and uniqueness theorem for boundary value problems was proved through
the continuity method. Most recently, the space of Dirac-harmonic maps was analyzed by B. Ammann and N. Ginoux in [6]
by using tools from index theory, and the existence of uncoupled solutions (i.e.,Φ is a harmonic map) was proved.

Most of the previous works deal with Dirac-harmonic maps from compact manifolds. It is the main aim of the present
paper to derive properties of Dirac-harmonic maps on complete noncompact manifoldsM .

In the classical works of S.T. Yau [7] and others on harmonic functions on noncompact manifolds, the gradient estimate
method plays a key role. On one hand, these estimates may directly give rise to Liouville type results; on the other hand,
theymay also lead to fundamental analytic properties such as Harnack inequalities, and furthermore, they are very useful for
establishing existence results. This method has been extended to the case of harmonic maps. In [8], S.Y. Cheng established
gradient estimates andderived the Liouville theorem for harmonicmaps fromanoncompactmanifoldM into a nonpositively
curvedmanifoldN . In [9] H.I. Choi proved a similar result for harmonicmaps into a regular ball, namely, a geodesic ball By0(R)
with radius R that lies within the cut locus of its center y0 ∈ N and satisfies R < π/2

√
KN , where the sectional curvature

of N is bounded above by KN > 0. The gradient estimates turn out to be a powerful tool for proving existence results of
harmonic maps and their heat flows on noncompact manifolds. For example, in [10], J.Y. Li used it to improve the result of
P. Li and L.F. Tam [11] with a different method.

In this paper, wewill first derive a gradient estimate for Dirac-harmonicmaps from complete Riemannian spinmanifolds
into regular balls in the target manifolds, which generalizes the result for harmonic maps in [9]. As an application, we then
prove a Liouville theorem for Dirac-harmonic maps under curvature conditions. We also obtain Liouville theorems under
energy conditions.

When the target has nonpositive curvature, the size of the target ball is arbitrary (topological issues can be avoided by
lifting to universal covers). In the presence of positive target curvature, however, we know since [12] that a restriction on
the radius of the target ball is needed in order to obtain estimates. The optimal size of such a ball corresponds to an open
hemisphere in the case of the standard sphere, as shown in [12]. Remarkably, we can achieve the same optimal condition
on the radius R < π/2

√
KN as in [9] for Dirac-harmonic maps as in the original work for harmonic maps.

We can now state our gradient estimate.

Theorem 1 (Gradient Estimate). Suppose the Ricci curvature of M satisfies RicM ≥ −κ for some nonnegative constant κ , the
sectional curvature secN and the curvature tensor RN of N satisfy −b2 ≤ secN ≤ b1 and

∇RN
 ≤ b3 respectively, where bi are

constants with b2 ≥ b1 > 0, b3 ≥ 0. Denote

b = b32 + b42 + b23.

If (Φ,Ψ ) is Dirac-harmonic andΦ : Mm
−→ By0(R) ⊂ Nn, R < π/(2

√
b1), then, for any x0 ∈ M and any positive constant a,

we have

sup
Bx0 (a/2)

∥dΦ∥ ≤
C(m, n)

√
b1 cos2(

√
b1R)


1 +

√
κa

a
+


b
b1

sup
Bx0 (a)

∥Ψ ∥
2


, (1.2)

where C(m, n) > 0 is a constant depending only on the dimensions m and n.

Remark 1. Under the hypothesis of Theorem 1, if Φ is a harmonic map and we choose Ψ ≡ 0, then in fact we can obtain
the following global estimate for dΦ:

sup
M

∥dΦ∥ ≤

√
min {m, n} κ

√
b1 cos(

√
b1R)

.
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