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a b s t r a c t

The abelian Higgs model on a compact Riemann surface Σ supports vortex solutions for
any positive vortex number d ∈ Z. Moreover, the vortex moduli space for fixed d has long
been known to be the symmetrized d-th power of Σ , in symbols, Symd(Σ). This moduli
space is Kähler with respect to the physically motivated metric whose geodesics describe
slow vortex motion.

In this paper we appeal to classical properties of Symd(Σ) to obtain new results for the
moduli space metric. Our main tool is the Abel–Jacobi map, which maps Symd(Σ) into the
Jacobian of Σ . Fibres of the Abel–Jacobi map are complex projective spaces, and the first
theorem we prove states that near the Bradlow limit the moduli space metric restricted
to these fibres is a multiple of the Fubini–Study metric. Additional significance is given to
the fibres of the Abel–Jacobi map by our second result: we show that if Σ is a hyperelliptic
surface, there exist two special fibreswhich are geodesic submanifolds of themoduli space.
Even more is true: the Abel–Jacobi map has a number of fibres which contain complex
projective subspaces that are geodesic.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction and results

Vortices in the abelian Higgs model on a Riemann surface Σ have been studied for a long time [1–8], and the vortex
moduli space has also received much attention. In the so-called geodesic approximation [9,10] the motion of vortices is
described by geodesics on the moduli space, with respect to a physically motivated metric. The moduli space is Kähler with
respect to thismetric [5,7], and a semi-explicit, local formula for themoduli spacemetric was also obtained in [5]. Moreover,
one can give an explicit description of the moduli space as a complex manifold: this is due to the result in [6] that vortex
configurations on Σ , with vortex number d, are in 1–1 correspondence with positive divisors of degree d. Hence the moduli
space is the symmetrized power Symd(Σ), and, rather intuitively, a positive divisor D ∈ Symd(Σ) describes a configuration
of vortices centred at the points in the support of D.

Here we are solely interested in the case where Σ is a compact Riemann surface. Then, viewing the moduli space as
Symd(Σ), one can use classical methods from the theory on compact Riemann surfaces to gain further insight into the
structure of the moduli space. In particular, there is a version of the Abel–Jacobi map,

AJ: Symd(Σ) → Jac(Σ), (1)

which maps the vortex moduli space into the Jacobian Jac(Σ) of the Riemann surface Σ . The image of AJ is generally a
subvariety of Jac(Σ), and the fibres are complex projective spaces. The Abel–Jacobimap is particularly useful when studying
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vortices near the so-called Bradlow limit [6]. The Bradlow limit provides an upper bound on the number of vortices that can
fit on a surface Σ of finite area. In the Bradlow limit vortices are fully dissolved, i.e. the Higgs field vanishes identically. Near
the Bradlow limit the Higgs field magnitude is small and therefore vortices are very spread out objects. The smallness of the
Higgs field magnitude suggests that one should expand interesting quantities, such as the moduli space metric, in terms of
the Higgs field magnitude.

The usefulness of the Abel–Jacobi map near the Bradlow limit is a consequence of the fact that in the strict Bradlow limit
the vortex moduli space coincides with Jac(Σ). The moduli space metric in the Bradlow limit was recently shown in [11]
to be the flat metric on the torus Jac(Σ). Near the Bradlow limit the fibres of AJ are metrically small, and the lowest order
contribution to the moduli space metric is due to vortex motion in the image of AJ. This contribution was also worked out
in [11], and it was found to be degenerate at those p ∈ Jac(Σ) for which AJ−1

{p} has positive dimension. This leads to the
questionwhat contribution to themoduli spacemetric is due to vortexmotion in the fibres of AJ. The answer to this question
is our first theorem.

Theorem 1. Let p ∈ Jac(Σ) be in the image of AJ, and let k ∈ N be such that AJ−1
{p} ∼= CPk. Near the Bradlow limit the leading

order contribution to the moduli space metric, restricted to AJ−1
{p}, is a multiple of the Fubini–Study metric on CPk.

This result generalizes thework of [12], where vortices onCP1 were studied near the Bradlow limit, and themoduli space
metric was found to be a multiple of the Fubini–Study metric. Note that Symd(CP1) ∼= CPd, and since the Jacobian of CP1 is
a point, the Abel–Jacobi map is trivial. Hence, the result of [12] is a special case of Theorem 1.

While Theorem 1 serves to alleviate the degeneracy of the moduli space metric found in [11], the splitting of vortex
motion into directions in the image and fibre of AJ does not appear to be very natural from a physical point of view. However,
if a fibre of AJ is a geodesic submanifold of themoduli space, then it is sensible to study the dynamics of vortex configurations
that correspond to points in this fibre. Our second result is that on a hyperelliptic Riemann surface there exist two fibres of
AJ that are indeed geodesic.

Before we can express the previous statement as a theorem, we need to introduce some notation: by KΣ we denote
the canonical line bundle of the Riemann surface Σ . A hyperelliptic Riemann surface Σ is defined by the existence of a
holomorphic projection map

π :Σ → CP1, (2)

which is 2–1. If we regard a point p ∈ CP1 as a divisor of degree one, then the pulled-back divisor π−1(p) consists of the
two points, counted with multiplicity, in the preimage of π . The holomorphic line bundle O(π−1(p)) on Σ is independent
of p, up to isomorphism. The existence of the map π also leads to a natural holomorphic automorphism of Σ , defined by
exchanging the two points in π−1(p). This automorphism is referred to as the hyperelliptic involution of Σ . Now we are
ready to state our next theorem.

Theorem 2. Let Σ be a hyperelliptic Riemann surface, equipped with a metric such that the hyperelliptic involution of Σ is an
isometry. Then PH0(Σ, KΣ ) and PH0(Σ, O(π−1(p))), p ∈ CP1, are geodesic submanifolds of the moduli space.

As usual, H0(Σ, KΣ ) denotes the space of holomorphic sections of KΣ , and PH0(Σ, KΣ ) is its projectivization, and
analogously for O(π−1(p)). It is a standard observation that PH0(Σ, KΣ ) and PH0(Σ, O(π−1(p))) can be identified with
fibres of the Abel–Jacobi map, and we will review this in Section 2. We stress that Theorem 2 holds in general, not only near
the Bradlow limit. The fact that the fibre PH0(Σ, O(π−1(p))) is a geodesic submanifold of the vortex moduli space is also a
consequence of Proposition 7.1 in [13], for which an isometry on the moduli space is required.

Theorem 2 is a special case of Lemma 2, which we will establish in Section 4. In this introduction we omit a precise
statement of Lemma 2 since this requires some additional technical preparations. In summary, Lemma 2 identifies a number
of complex projective spaces that embed into the vortex moduli space as geodesic submanifolds. These complex projective
spaces are linear systems of divisors on Σ . However, these linear systems are not necessarily complete, i.e. they may not fill
out entire fibres of the Abel–Jacobi map.

The structure of this paper is as follows. In Section 2 we review classification results for holomorphic line bundles on
compact Riemann surfaces. This review includes the definition of the Abel–Jacobi map and general properties of its fibres. In
Section 3we study the Bogomolny equations near the Bradlow limit.We introduce a suitable description of themoduli space
near the Bradlow limit, and based on this we prove Theorem 1. In Section 4 we review standard properties of hyperelliptic
Riemann surfaces and we use them to prove Lemma 2, and consequently Theorem 2.

2. Holomorphic line bundles on Riemann surfaces

In this section we summarize the standard classification results for holomorphic line bundles in terms of the Picard
and Jacobian varieties. We also review how holomorphic line bundles can be characterized equivalently by divisors and by
Dolbeault operators. For detailed derivations and proofs we refer to standard textbooks such as [14–17]. The main purpose
of this section is to introduce notation, and the reader familiar with the theory of line bundles on compact Riemann surfaces
may well want to skip to Section 3.
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