Contents lists available at SciVerse ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Quantum free Yang-Mills on the plane

Michael Anshelevich^a, Ambar N. Sengupta^{b,*}

^a Department of Mathematics, Texas A&M University, College Station, TX 77843, United States ^b Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, United States

ARTICLE INFO

Article history: Received 22 August 2011 Accepted 19 October 2011 Available online 29 October 2011

MSC: primary 81T13 secondary 46L54

Keywords: Quantum Yang–Mills Free probability Large-N limit Stochastic geometry

1. Introduction

ABSTRACT

We construct a free-probability quantum Yang–Mills theory on the two dimensional plane, determine the Wilson loop expectation values, and show that this theory is the $N = \infty$ limit of U(N) quantum Yang–Mills theory on the plane. Our model provides an example of a stochastic geometry, motivated by quantum field theory, based on free probability theory.

© 2011 Elsevier B.V. All rights reserved.

In this paper we use free probability and free stochastic calculus to construct a large-N limit of U(N) quantum Yang–Mills theory on the Euclidean plane \mathbb{R}^2 . While it has long been expected that free probability should play a central role in describing large-N limits of certain matrix-model quantum theories (see, for instance, Douglas [1] and Gopakumar and Gross [2]), the model we develop, along with the earlier work of Xu [3] in this context, may be the first concrete rigorously developed example of a free-probability based geometric quantum field theory.

Pure quantum Yang–Mills theory, with gauge group U(N) and spacetime \mathbb{R}^2 , is described by the Yang–Mills measure μ_g

which is formally a measure on gauge equivalence classes of connections *A* and has formal density $e^{-\frac{1}{2g^2} \|F^A\|_{L^2}^2}$, where F^A is the curvature of a connection form *A* and g > 0 a coupling constant. It has been known, at least since the work of 't Hooft [4], that this theory has a meaningful and conceptually useful limit as $N \to \infty$, holding g^2N fixed.

There is a vast body of works in the physics literature on the large-*N* limit of U(N) gauge theories (early works include those of Kazakov and Kostov [5,6]). On the mathematical side, Singer [7] showed that a mathematically meaningful 'master field' exists as the large-*N* limit of two-dimensional U(N) quantum Yang–Mills theory. Our free-probability Yang–Mills theory may be viewed as a realization of this master field theory. The large-*N* limit of Wilson loop expectations in quantum Yang–Mills on \mathbb{R}^2 was studied by Xu [3] using the known distributions of the U(N) Wilson loop expectation values. For a brief review see [8].

* Corresponding author.

E-mail addresses: manshel@math.tamu.edu (M. Anshelevich), sengupta@math.lsu.edu (A.N. Sengupta). *URLs*: http://www.math.tamu.edu/~manshel/ (M. Anshelevich), http://www.math.lsu.edu/~sengupta (A.N. Sengupta).

^{0393-0440/\$ –} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.geomphys.2011.10.005

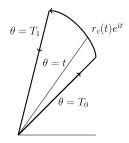


Fig. 1. A cross radial path.

2. Classical, quantum, and free

In making comparisons of our theory to classical differential geometric gauge theory, one should have in mind a U(N) principal bundle over \mathbb{R}^2 . For convenience we may trivialize the bundle and take the space \mathcal{A} of all connections as the space of smooth u(N)-valued 1-forms on \mathbb{R}^2 , where u(N) is the Lie algebra of skew-Hermitian $N \times N$ matrices. The group \mathcal{G} of gauge transformations consists of smooth maps $\phi : \mathbb{R}^2 \to U(N)$ and acts on \mathcal{A} by

$$A^{\phi} = \phi A \phi^{-1} + \phi d \phi^{-1}.$$

It is usually more convenient to work with \mathcal{G}_o , the subgroup of \mathcal{G} consisting of transformations which are the identity over the basepoint o = (0, 0). Parallel transport by A along a piecewise smooth path $c : [T_0, T_1] \to \mathbb{R}^2$ is given by $h_c(T_1)$ where $h_c : [T_0, T_1] \to U(N)$ solves

$$dh_c(t) = -A(c'(t))h_c(t) dt$$
 and $h_c(T_0) = I$,

with *t* running over $[T_0, T_1]$. For any $A \in A$ there is a $\phi \in g_o$ for which $A_{rad} = A^{\phi}$ vanishes on radial vectors; this is radial gauge fixing, and identifies A/g_o with the linear space A_o of u(N)-valued functions on \mathbb{R}^2 by associating each A to $f^{A_{rad}}$ times the area 2-form on \mathbb{R}^2 . The equation of parallel transport then associates to each $f \in A_o$ and path $c : [T_0, T_1] \to \mathbb{R}^2 : t \mapsto r_c(t)e^{it}$ (see Fig. 1), the differential equation

$$dh_c(t) = idM_c^J(t)h_c(t) \text{ and } h_c(T_0) = I,$$
 (2.1)

where $-iM_c^f(t)$ is the integral of *f* times area-form over the cone

$$S_c(t) = \{ re^{i\theta} : \theta \in [T_0, t], 0 < r < r_c(\theta) \}.$$

$$(2.2)$$

Primarily we are interested in loops *c* based at the origin *o*, and then $h_c(T_1)$ is the classical *holonomy* of the connection on the loop *c*.

For quantum Yang–Mills theory with gauge group U(N) the Yang–Mills measure is a probability measure specified formally by the expression

$$d\mu_g(A) = \frac{1}{Z_g} e^{-\frac{1}{2g^2} \|F^A\|_{L^2}^2} [DA],$$

where $F^A = dA + A \wedge A$ is the curvature of a connection form *A*, *g* is a parameter that may be viewed as a 'coupling constant', and [*DA*] is formal Lebesgue measure on A_o . Then μ_g is realized rigorously as Gaussian measure

$$d\mu_g(f) = \frac{1}{Z_g} e^{-\frac{1}{2g^2} \|f\|_{L^2}^2} Df$$
(2.3)

on a suitable completion of $L^2(\mathbb{R}^2) \otimes u(N)$. This will be reviewed in more detail below in Section 5, but for the sake of motivation for the free theory let us take a very quick look at the framework of the U(N) theory. To each $f \in L^2(\mathbb{R}^2)$ is associated a u(N)-valued random variable $ib_{N,f}$, where $b_{N,f}$ is an $N \times N$ Gaussian Hermitian random matrix with mean 0 and entries having variances determined by $\frac{1}{N} ||f||_{L^2}^2$. Following an idea of Gross [9], the classical differential Eq. (2.1) is replaced by the Itô stochastic differential equation

$$dh_{c}(t) = idM_{N,c}(t)h_{c}(t) - \frac{1}{2}dM_{N,c}(t)^{2}h_{c}(t) \text{ and } h_{c}(T_{0}) = I,$$
(2.4)

where now $M_{N,c}(t)$ is $b_{N,f}$ with $f = 1_{S_c(t)}$. These equations were studied and the full theory of the quantum Yang–Mills measure on the plane were developed by Gross et al. [9] and Driver [10].

The large-*N* limit of the white noise process $f \mapsto b_{N,f}$, as $N \to \infty$, can be described by using free probability [11]. We proceed now to outline this framework very briefly and also describe the corresponding parallel transport process.

Download English Version:

https://daneshyari.com/en/article/1893841

Download Persian Version:

https://daneshyari.com/article/1893841

Daneshyari.com