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Abstract

This paper presents sufficient conditions for global asymptotic/exponential stability of neural networks with time-
varying delays. By using appropriate Lyapunov–Krasovskii functionals, we derive stability conditions in terms of linear
matrix inequalities (LMIs). This is convenient for numerically checking the system stability using the powerful MAT-
LAB LMI Toolbox. Compared with some earlier work, our result does not require any restriction on the derivative of
the delay function. Numerical example shows the efficiency and less conservatism of the present result.
� 2005 Elsevier Ltd. All rights reserved.

1. Introduction

Time delays inevitably exist in neural networks due to various reasons. For example, time delays can be caused by
the finite switching speed of amplifier circuits in neural networks [1] or deliberately introduced to achieve tasks of deal-
ing with motion-related problems, such as moving image processing [2]. The existence of time delays may degrade sys-
tem performance and cause oscillation in a network, leading to instability. Study of time delay effects on stability and
convergent dynamics of neural networks has received considerable attention in the past decades (see, e.g., [1–19] and the
references therein).

While many works considered the case of neural networks with constant time delays [1–12], there are also practical
cases where time delays are uncertain and may be time varying. Recently, there has been an increasing interest in
addressing stability of neural networks with time varying delays (e.g., [13–19]). It is often assumed in these studies that
the time delay function is continuously differentiable and its derivative does not exceed the unity [15–19]. This is a very
restrictive condition due to the use of some specific Lyapunov–Krasovskii functionals in deriving the stability
conditions.

In this paper we will employ a new Lyapunov–Krasovskii functional for establishing exponential stability conditions
for neural networks with time-varying delays. Our conditions do not impose any restriction on the derivative of time
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delay functions and are expressed in terms of linear matrix inequalities (LMIs), which can be checked numerically using
the effective LMI toolbox in MATLAB. Compared with some existing results on neural networks with constant time
delays, the presented conditions can give greater delay bound for stability, leading to less conservative conditions.

This paper is organized as follows. Section 2 gives the model description and some preliminary results. Section 3
presents the main result of this paper on the LMI stability conditions. In Section 4, an example is given to show the
effectiveness of the obtained results. Finally, a brief conclusion is drawn in Section 5.

2. Model and preliminaries

The neural network with time varying delay considered in this paper is described by the following differential
equation:

_uðtÞ ¼ �CuðtÞ þ AgðuðtÞÞ þ Bgðuðt � sðtÞÞÞ þ I ð1Þ

where u(t) = [u1(t),u2(t), . . . ,un(t)]T is the neuron state vector, C = diag(c1, . . . ,cn) > 0 is the relaxation matrix,
A = (aij)n·n and B = (bij)n·n are weight matrices, g(u) = [g1(u1),g2(u2), . . . ,gn(un)]T denotes the neuron activations,
I = [I1, I2, . . . , In]T is the constant external input vector, and s(t) is a continuous function describing the time-varying
transmission delays in the network system and satisfies 0 6 s(t) 6 h for all t P 0, with h a constant.

Throughout this paper we assume gj(uj) are bounded and satisfy the following condition:

jgjðxÞ � gjðyÞj 6 ljjx� yj ð2Þ
where lj > 0 are constants for j = 1,2, . . . ,n.

With the boundedness of function gi, it follows readily from Brouwer�s fixed point theorem that for a given constant
input vector I, system (1) has at least one equilibrium point u� ¼ ½u�1; u�2; . . . ; u�n�

T determined by

Cu� ¼ ðAþ BÞgðu�Þ þ I

For convenience in discussion, we shift u* to the origin by taking the transformation x = u � u* and write Eq. (1) into
the form

_xðtÞ ¼ �CxðtÞ þ Af ðxðtÞÞ þ Bf ðxðt � sðtÞÞÞ ð3Þ

where x = [x1,x2, . . . ,xn]T, f(x) = [f1(x1), f2(x2), . . . , fn(xn)]T with fjðxjÞ ¼ gjðxj þ u�j Þ � gjðu�j Þ. By condition (2), fj(xj)
satisfy

jfjðxjÞj 6 ljjxjj; j ¼ 1; 2; . . . ; n ð4Þ

The solution of system (3) is dependent on an initial condition x(h) for �h 6 h 6 0.
In the following, we will use the notation X > 0 (X < 0) to denote a symmetric and positive definite (negative defi-

nite). To obtain our stability conditions, we need the following technical results.

Lemma 1 [20]. For any vectors a; b 2 Rn and any positive definite matrix Y 2 Rn�n, the following inequality holds:

2aTb 6 aTYaþ bTY �1b

Lemma 2 [20]. For a symmetric matrix

S ¼
S11 S12

ST
12 S22

� �

the following conditions are equivalent:

(i) S < 0.

(ii) S11 < 0 and S22 � ST
12S�1

11 S12 < 0.

(iii) S22 < 0 and S11 � S12S�1
22 ST

12 < 0.

3. Stability analysis

First we consider the global asymptotic stability of system (3).
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