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a b s t r a c t

It is found that the application of a newly developed geometrical criterion, in which
negative eigenvalues of the associated matrix determined by the dynamical curvature
of a conformal metric for a Hamiltonian system are used to identify the onset of local
instability or chaos, is somewhat problematic in some circumstances. In fact, this criterion
is neither necessary nor sufficient for the prediction of instability of orbits on a same energy
hypersurface because it is not in good agreement with information on unstable or chaotic
behavior given by the maximal Lyapunov exponent in general.
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1. Introduction

In the last decade or so, much effort has been devoted to formulate invariant chaos indicators in general relativity (for
reviews and references see [1–6]). For example, Sota et al. gave a geometrical criterion for chaos based on the eigenvalues
associated with the Weyl curvature tensor [5]. The geometrical criteria like this are also applied to Hamiltonian systems in
classical mechanics [7,8]. For isotropic manifolds given by a Hamiltonian system

H =
1
2m

p2 + V (x) (1)

with V as a potential function of space variables, the geodesic deviation equation takes a simple form

D2J
ds2
+ K J = 0, (2)
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where D denotes the covariant derivative, K is the constant sectional curvature of the manifold, and s is considered as a
measure of time. When the configuration space is two-dimensional, the scalar curvature reads as K = 1

2R with

R =
(∇V )2

(E − V )3
+

∆V
(E − V )2

, (3)

where ∇ ,∆ and E stand, respectively, for the Euclidean gradient, Laplacian operators and energy. By a projection along the
direction normal to the geodesic, covariant derivatives become ordinary derivatives, i.e., D/ds ≡ d/ds. The geodesic flow
is unstable only if K < 0. This means the onset of chaos in the case of compact manifolds. On the other hand, the geodesic
flow is stable if K > 0. This instability criterion by negative curvatures is constructed on the Jacobi metric. Hereafter the
criterion is labeled as C1.
It is worth stressing that this criterion C1 should be carefully used when the curvature K is no longer a constant. It is

still suitable for the case that the nonconstant curvature K is everywhere negative. In fact, the case corresponds to that of
hyperbolicity, viewed as an important mechanism leading to the origin of the instability of the geodesics. However, C1 is
somewhat questionable to treat the manifolds whose curvature is neither constant nor everywhere negative. In practice, it
was found that chaos can be caused not only by negative curvatures but also by positive nonconstant curvatures [6,9–11].
In other words, a negative curvature is not necessary at all for the presence of chaos in a geodesic flow. These facts show
sufficiently that besides themechanismof the hyperbolicity anothermechanism inducing chaos in geodesic flows of physical
relevance, namely, parametric instability1 due to the variability of curvature along the geodesics, should be present [10–13].
This mechanism is obviously active also when the mechanical manifold is mainly positively curved. Besides the reason
why a fluctuating positive nonconstant curvature along the geodesic can produce instability, these articles gave an analytic
formula for the largest Lyapunov exponent depending on the evolution of the averages and fluctuations of the curvature of
the configuration space with varying energy. Here are some details. In order to cope with the limitation of C1, Refs. [10,11]
replaced the Jacobi equation (2) with the following expression

d2ψ
dt2
+ 〈kR〉µψ + σΩη(t)ψ = 0, (4)

whereψ denotes any of the components about the Jacobi field J with N dimensions, and η is a Gaussian function with zero
mean and unit variance. In addition, the average Ricci curvature and its fluctuation are respectively written as

Ω0 = 〈kR〉µ =
1

N − 1
〈∆V 〉µ, (5)

σ 2Ω =
1

N − 1
〈δ2KR〉µ =

1
N − 1

[〈(∆V )2〉µ − 〈∆V 〉2µ], (6)

where 〈〉µ stands for static averages computed with the microcanonical measureµ on the constant energy surface of phase
space. In a word, both of them are functions of the energy E. They also determine the largest Lyapunov exponent

λ(Ω0, σΩ , τ ) =
1
2

(
Λ−

4Ω0
3Λ

)
(7)

with

Λ =

2τσ 2Ω +
[(
4Ω0
3

)3
+ (2τσ 2Ω)

2

]1/2
1/3

, (8)

2τ =
πΩ

1/2
0

2[Ω0(Ω0 + σΩ)]1/2 + πσΩ
. (9)

Of course, λ is still a function of the energy E. Hence the criterion marked as C2, by applying curvature fluctuations of
the manifolds to find the energy dependence of the geometric instability exponent, is constructed. Some examples have
displayed that it is more sensitive to detect instability or chaos than the method C1. Readers are also recommended to see a
thorough discussion about similar topics which is given in the recently published book entitled ‘‘Geometry and Topology in
Hamiltonian Dynamics and Statistical Mechanics’’ by Pettini [14]. Additionally, it is worth mentioning that although several
examples in [10,11] described that analytic results of Eq. (7) for the largest Lyapunov exponent vs the energy density coincide
basically with numeric results, the Lyapunov exponent by Eq. (7) is quite different from the usual sense of the Lyapunov
exponent in the known literature (e.g. see [15]). The Lyapunov exponent from Eq. (7), as a function of the energy, is of help
for telling one which energy is possible or impossible to bring chaos, but it is very difficult to provide any details about the

1 It means that parameters vary periodically or quasiperiodically in time.
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