Extended studies of separability functions and probabilities and the relevance of Dyson indices

Paul B. Slater*
ISBER, University of California, Santa Barbara, CA 93106, United States

A R TICLE INFO

Article history:

Received 1 November 2006
Received in revised form 8 February 2008
Accepted 17 March 2008
Available online 28 March 2008

MSC:

81P05
52A38
15A90
28A75
PACS:
03.67.-a
02.30.Cj
02.40.Ky
02.40.Ft

Keywords:

Hilbert-Schmidt metric
Bures metric
Minimal monotone metric Quaternionic quantum mechanics
Separable volumes
Separability probabilities
Two-qubits
Separability functions
Truncated quaternions
Bloore parameterization
Correlation matrices
Random matrix theory
Quasi-Monte Carlo integration
Tezuka-Faure points
Separable volumes
Separability probabilities
Catalan's constant
Euler angles
Verstraete-Audenaert-De Moor function

Abstract

We report substantial progress in the study of separability functions and their application to the computation of separability probabilities for the real, complex and quaternionic qubit-qubit and qubit-qutrit systems. We expand our recent work [P.B. Slater, J. Phys. A 39 (2006) 913], in which the Dyson indices of random matrix theory played an essential role, to include the use of not only the volume element of the Hilbert-Schmidt (HS) metric, but also that of the Bures (minimal monotone) metric as measures over these finite-dimensional quantum systems. Further, we now employ the Euler-angle parameterization of density matrices (ρ), in addition to the Bloore parameterization. The Euler-angle separability function for the minimally degenerate complex two-qubit states is well-fitted by the sixthpower of the participation ratio, $R(\rho)=\frac{1}{\operatorname{Tr} \rho^{2}}$. Additionally, replacing $R(\rho)$ by a simple linear transformation of the Verstraete-Audenaert-De Moor function [F. Verstraete, K. Audenaert, B.D. Moor, Phys. Rev. A 64 (2001) 012316], we find close adherence to Dysonindex behaviour for the real and complex (nondegenerate) two-qubit scenarios. Several of the analyses reported help to fortify our conjectures that the HS and Bures separability probabilities of the complex two-qubit states are $\frac{8}{33} \approx 0.242424$ and $\frac{1680(\sqrt{2}-1)}{\pi^{8}} \approx$ 0.733389 , respectively. Employing certain regularized beta functions in the role of Eulerangle separability functions, we closely reproduce - consistently with the Dyson-index ansatz - several HS two-qubit separability probability conjectures.

© 2008 Elsevier B.V. All rights reserved.

[^0]
1. Introduction

For several years now, elaborating upon an idea proposed in [3], we have been pursuing the problem of deriving (hypothetically exact) formulas for the proportion of states of qubit-qubit [4] and qubit-qutrit [5] systems that are separable (classically-correlated) in nature [1,6-12]. Of course, any such proportions will critically depend on the measure that is placed upon the quantum systems. In particular, we have - in analogy to (classical) Bayesian analyses, in which the volume element of the Fisher information metric for a parameterized family of probability distributions is utilized as a measure ("Jeffreys' prior") [13] - principally employed the volume elements of the well-studied (Euclidean, flat) Hilbert-Schmidt (HS) and Bures (minimal monotone or symmetric-logarithmic-derivative [SLD]) metrics (as well as a number of other [nonminimal] monotone metrics [10]).

Życzkowski and Sommers [14,15] have, using methods of random matrix theory [16] (in particular, the Laguerre ensemble), obtained formulas, general for all n, for the HS and Bures total volumes (and hyperareas) of $n \times n$ (real and complex) quantum systems. Up to normalization factors, the HS total volume formulas were also found by Andai [17], in a rather different analytical framework, using a number of (spherical and beta) integral identities and positivity (Sylvester) conditions. (He also obtained formulas - general for any monotone metric [including the Bures] - for the volume of one-qubit [$n=2$] states [17, Section 4].)

Additionally, Andai did specifically study the HS quaternionic case. He derived the HS total volume for $n \times n$ quaternionic systems [17, p. 13646],

$$
\begin{equation*}
V_{\text {quat }}^{\mathrm{HS}}=\frac{(2 n-2)!\pi^{n^{2}-n}}{\left(2 n^{2}-n-1\right)!} \prod_{i=1}^{n-2}(2 i)!, \tag{1}
\end{equation*}
$$

giving us for the two-qubit ($n=4$) case that will be our specific initial interest here, the 27-dimensional volume,

$$
\begin{equation*}
\frac{\pi^{12}}{7776000} \cdot \frac{1}{40518448303132800}=\frac{\pi^{12}}{315071454005160652800000} \approx 2.93352 \times 10^{-18} \tag{2}
\end{equation*}
$$

(In the analytical setting employed by Życzkowski and Sommers [14], this volume would appear as 2^{12} times as large [17, p. 13647].)

If one then possessed a companion volume formula for the separable subset, one could immediately compute the HS two-qubit quaternionic separability probability $\left(P_{\text {quat }}^{\mathrm{HS}}\right)$ by taking the ratio of the two volumes. In fact, following a convenient paradigm we have developed, and will employ several times below, in varying contexts, we will compute $P_{\text {quat }}^{\mathrm{HS}}$ as the product ($R_{1} R_{2}$) of two ratios, R_{1} and R_{2}. The first (24-dimensional) factor on the left-hand side of (2) will serve as the denominator of R_{1} and the second (3-dimensional) factor, as the denominator of R_{2}. The determinations of the numerators of such pairs of complementary ratios will constitute, in essence, our (initial) principal computational challenges.

1.1. Bloore parameterization of density matrices

One analytical approach to the separable volume/probability question that has recently proved to be productive [2] particularly, in the case of the Hilbert-Schmidt (HS) metric (cf. [18]) - makes fundamental use of a (quite elementary) form of density matrix parameterization first proposed by Bloore [19]. This methodology can be seen to be strongly related to the very common and long-standing use of correlation matrices in statistics and its many fields of application [2022]. (Correlation matrices can be obtained by standardizing covariance matrices. Density matrices have been viewed as covariance matrices of multivariate normal [Gaussian] distributions [23]. Covariance matrices for certain observables have been used to study the separability of finite-dimensional quantum systems [24]. The possible states of polarization of a two-photon system are describable by six Stokes parameters and a 3×3 "polarization correlation" matrix [25].)

In the Bloore (off-diagonal scaling) parameterization, one simply represents an off-diagonal $i j$-entry of a density matrix ρ, as $\rho_{i j}=\sqrt{\rho_{i i} \rho_{j j}} w_{i j}$, where $w_{i j}$ might be real, complex or quaternionic [26-28] in nature. The particular attraction of the Bloore scheme, in terms of the separability problem in which we are interested, is that one can (in the two-qubit case) implement the well-known Peres-Horodecki separability (positive-partial-transpose) test [29,30] using only the ratio,

$$
\begin{equation*}
\mu=\sqrt{v}=\sqrt{\frac{\rho_{11} \rho_{44}}{\rho_{22} \rho_{33}}} \tag{3}
\end{equation*}
$$

rather than the four (three independent) diagonal entries of ρ individually [1, Eq. (7)], [2, Eq. (5)].
Utilizing the Bloore parameterization, we have, accordingly, been able to reduce the problem of computing the desired HS volumes of two-qubit separable states to the computations of one-dimensional integrals (33) over $\mu \in[0, \infty]$. The associated integrands are the products of two functions, one a readily determined jacobian function $\mathcal{G}(\mu)$ (corresponding, first, to the transformation to the Bloore variables $w_{i j}$ and, then, to μ) and the other, the more problematical (what we have termed) separability function $\delta^{\mathrm{HS}}(\mu)$ [1, Eqs. (8), (9)].

In the qubit-qutrit case [Section 2.3], two ratios,

$$
\begin{equation*}
v_{1}=\frac{\rho_{11} \rho_{55}}{\rho_{22} \rho_{44}}, \quad \nu_{2}=\frac{\rho_{22} \rho_{66}}{\rho_{33} \rho_{55}} \tag{4}
\end{equation*}
$$

https://daneshyari.com/en/article/1894455

Download Persian Version:

https://daneshyari.com/article/1894455

Daneshyari.com

[^0]: * Tel.: +1 8059666942.

 E-mail address: slater@kitp.ucsb.edu.

