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Abstract

We study some geometrical and topological properties of the electric fields created by point charges on Riemannian manifolds
from the viewpoint of the theory of dynamical systems. We provide a thorough description of the structure of the basin boundary
and its connection with the topology of the manifold, and characterize the spaces in which the orbits of the electric field are
geodesics. We also consider symmetries of electric fields on manifolds, particularly on spaces of constant curvature.
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1. Introduction

The discovery of the inverse-square law for Newtonian and Coulomb interactions is a milestone in the physics
of the seventeenth and eighteenth centuries. The central claim of electrostatic theory [2,24] is that the force per unit
charge experienced by a test particle situated at a point x ∈ R3 subject to the interaction created by a charge of
magnitude q ∈ R is given by the electric vector field

E =
q

4π
x − x0

|x − x0|3
.

Here x0 ∈ R3 is the position of the point particle originating the interaction, and we have chosen Heaviside–Lorentz
units. The same law also holds for the gravitational interaction created by a point mass of magnitude −q in natural
units.

Since then, the study of electric fields generated by N point charges qi (i = 1, . . . , N ) in Euclidean space has
become a classical problem in mathematical physics and potential theory [11]. When the charges are all negative, this
is equivalent to studying the Newtonian gravitational field created by N point masses |qi |, which also coincides with
the first-order approximation to the gravitational field in general relativity [37]. In modern treatments, one usually
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defines the potential function Vp : R3
→ R of a point charge, which is a fundamental solution of the Poisson equation

−1Vp = δp,

and obtains the electric field as E = −∇Vp. Here and in what follows, δp stands for the Dirac distribution centered at
p. The electric field created by several charges can be calculated using the superposition principle.

A natural generalization of this problem is the study of the electric fields generated by point charges on Riemannian
spaces. There is a vast literature on the fundamental solutions of the Poisson equation on manifolds, e.g., on
the existence of positive fundamental solutions [33,9,17,29,30], the study of upper and lower estimates for these
functions [45,31,22], and the connection of these fundamental solutions with the heat kernel [51,32,18].

Nevertheless, the geometric and topological properties of the gradient of the fundamental solutions have received
comparatively little attention. In this paper we shall focus on the study of this aspect using techniques from the
theory of dynamical systems, and we shall show some interesting connections between the orbits of the electric field
(historically known as electric lines or lines of force) and the topology of the space. Thus the concept of electric line,
as Faraday used to visualize the electric fields in the nineteenth century, is profitably extended to the framework of
general Riemannian manifolds.

Let us sketch the organization of this paper. In Section 2 we define the concepts of Li–Tam fundamental solution,
basin boundary, and some other objects of which we make extensive use in the following sections. In Section 3 the
topological structure of the electric lines and the basin boundary in an n-manifold is studied, whereas in Section 4 we
provide stronger results which hold for electric fields on surfaces (n = 2). Section 5 concentrates on the relationship
between electric lines and geodesics. In Section 6 we study the symmetries of the electric field and their application
to spaces of constant curvature, obtaining some exact solutions. Most of the material in Sections 3–6 is new, including
a detailed description of the topological structure of the basin boundary, and a complete characterization of spaces in
which the electric lines are geodesics.

2. Definitions

Let (M, g) be a Riemannian n-manifold without boundary, which we shall assume to be open, complete, analytic,
connected, finitely generated (i.e., all the homotopy groups of M have finite rank), and such that all its ends are
collared. For an arbitrary point p ∈ M , let Vp be a fundamental solution of the Poisson equation

−1Vp = δp, (1)

1 standing for the Laplace–Beltrami operator. Here δp denotes the Dirac distribution centered at p.
Li and Tam [29] have provided a geometric construction of solutions to this equation for any Riemannian manifold

(M, g). Their technique consists in considering a monotone sequence of compact domains p ∈ M1 ⊂ M2 ⊂ · · ·

which exhaust M , and studying the Dirichlet problem

−1V (k)
p = δp in Mk

V (k)
p = 0 on ∂Mk

in each Mk . Then a solution to Eq. (1) can be obtained as

Vp(x) = lim
k→∞

V (k)
p (x)− ck

for some sequence of non-negative constants (ck). The construction guarantees that Vp is analytic in M − p, and that
it is decreasing in the sense that for all R > 0

sup
M−Bp(R)

Vp = max
∂Bp(R)

Vp,

where Bp(R) = {x ∈ M : dist(x, p) < R}. These two properties are key to most of our work in the following
sections. Furthermore, the map v : M × M → R given by v(x, y) = Vy(x) is symmetric, and analytic in
{(x, y) ∈ M × M : x 6= y}.

When inf Vp = −∞, Vp is called a non-positive Green function, or an Evans function. This condition only depends
on the end structure of (M, g), and when it holds (M, g) is called parabolic. When inf Vp > −∞, one says that
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