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a b s t r a c t

Motivated by the relationship between orthogonal complex structures and pure spinors,
we define twisted partially pure spinors in order to characterize spinorially subspaces of
Euclidean space endowed with a complex structure.
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1. Introduction

Spinors have played an important role in both physics and mathematics ever since they were discovered by É. Cartan in
1913. Cartan defined pure spinors [1–3] in order to characterize (almost) complex structures. Pure spinors have been present
implicitly in both the Penrose formalism of General Relativity within the notion of ‘‘flag planes’’ [4,5] and, more recently, in
Seiberg–Witten theory, since every non-zero positive spinor is pure in 4 dimensions [6].

The notion of abstract CR structure in odd dimensions generalizes that of complex structure in even dimensions, and
aims to describe intrinsically the property of being a hypersurface of a complex space form. It has been proved that every
strictly pseudoconvex CR manifold has a canonical Spinc structure [7]. This fact, and the relation of pure spinors to complex
structures, naturally led us to askwhether it is possible to characterize CR structures by the existence of special spinor fields.

In this paper, we set up the algebraic preliminaries for such an endeavour. More precisely, we characterize subspaces of
Euclidean spaceRn endowedwith an orthogonal complex structure bymeans of twisted spinors, which is a generalization of
the relation between classical pure spinors and orthogonal complex structures on Euclidean spaceR2m. Recall that a classical
pure spinor φ ∈ ∆2m is a spinor such that the (isotropic) subspace of complexified vectors X − iY ∈ R2m

⊗ C, X, Y ∈ R2m,
which annihilate φ under Clifford multiplication, denoted by ‘‘·’’,

(X − iY ) · φ = 0

is of maximal dimension, wherem ∈ N and∆2m is the standard complex representation of the Spin group Spin(2m) (cf. [8]).
This means that for every X ∈ R2m there exists a Y ∈ R2m satisfying

X · φ = iY · φ.

By setting Y = J(X), one can see that a pure spinor determines a complex structure onR2m. Geometrically, the two subspaces
TM · φ and iTM · φ of ∆2m coincide, which means TM · φ is a complex subspace of ∆2m, and the effect of multiplication by
the number i =

√
−1 is transferred to the tangent space TM in the form of J .
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The authors of [9,10] investigated (the classification of) non-pure classical spinors by means of their isotropic subspaces.
In [10], the authors noted that there may be many spinors (belonging to different orbits under the action of the Spin
group) admitting isotropic subspaces of the same dimension, and that there is a gap in the possible dimensions of such
isotropic subspaces. In our Euclidean/Riemannian context, such isotropic subspaces correspond to subspaces of Euclidean
space endowed with orthogonal complex structures. Here, we define twisted partially pure spinors (cf. Definition 3.1) in
order to establish a one-to-one correspondence between subspaces of Euclidean space (of a fixed codimension) endowed
with orthogonal complex structures (and oriented orthogonal complements), and orbits of such spinors under a particular
subgroup of the twisted Spin group (cf. Theorem 3.1). By using spinorial twists we avoid having different orbits under the
full twisted Spin group and also the aforementioned gap in the dimensions.

As we mentioned earlier, the need to establish such a correspondence arises from our interest in developing a spinorial
setup to study the geometry ofmanifolds admitting (almost) CR structures (of arbitrary codimension) and elliptic structures.
Since such manifolds are not necessarily Spin nor Spinc , we are led to consider spinorially twisted Spin groups, representa-
tions, structures, etc. Geometric and topological considerations regarding such manifolds will be presented in [11].

The paper is organized as follows. In Section 2 we recall basic material on Clifford algebras, Spin groups and represen-
tations; we define the twisted Spin groups and representations that will be used, the space of anti-symmetric 2-forms and
endomorphisms associated to twisted spinors; we also present some results on subgroups and branching of representations.
In Section 3, we define partially pure spinors, deduce their basic properties and prove themain theorem, Theorem3.1, which
establishes the aforementioned one-to-one correspondence.

2. Preliminaries

In this section, we briefly recall basic facts about Clifford algebras, the Spin group and the standard Spin representa-
tion [12]. We also define the twisted Spin groups and representations, the antisymmetric 2-forms and endomorphisms
associated to a twisted spinor, and describe various inclusions of groups into (twisted) Spin groups.

2.1. Clifford algebras

Let Cln denote the Clifford algebra generated by the orthonormal vectors e1, e2, . . . , en ∈ Rn subject to the relations

ej · ek + ek · ej = −2

ej, ek


,

where

,

denotes the standard inner product in Rn. The even Clifford subalgebra Cl0n is defined as the invariant (+1)-

subspace of the involution of Cln induced by the map −IdRn . Let

Cln = Cln ⊗R C
denote the complexification of Cln. The Clifford algebras are isomorphic to matrix algebras. In particular,

Cln ∼=


End(C2k), if n = 2k,
End(C2k)⊕ End(C2k), if n = 2k + 1,

where

∆n := C2k
= C2

⊗ · · · ⊗ C2  
k times

is the tensor product of k = [
n
2 ] copies of C2. The map

κ : Cln −→ End(C2k)

is defined to be either the above mentioned isomorphism if n is even, or the isomorphism followed by the projection onto
the first summand if n is odd. In order to make κ explicit, consider the following matrices

Id =


1 0
0 1


, g1 =


i 0
0 −i


, g2 =


0 i
i 0


, T =


0 −i
i 0


.

In terms of the generators e1, . . . , en, κ can be described explicitly as follows,

e1 → Id ⊗ Id ⊗ · · · ⊗ Id ⊗ Id ⊗ g1,
e2 → Id ⊗ Id ⊗ · · · ⊗ Id ⊗ Id ⊗ g2,
e3 → Id ⊗ Id ⊗ · · · ⊗ Id ⊗ g1 ⊗ T ,
e4 → Id ⊗ Id ⊗ · · · ⊗ Id ⊗ g2 ⊗ T ,
... . . .

e2k−1 → g1 ⊗ T ⊗ · · · ⊗ T ⊗ T ⊗ T ,
e2k → g2 ⊗ T ⊗ · · · ⊗ T ⊗ T ⊗ T ,
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