Quasi-periodic solutions to the hierarchy of four-component Toda lattices

Jiao Wei ${ }^{*}$, Xianguo Geng, Xin Zeng
School of Mathematics and Statistics, Zhengzhou University, 100 Kexue Road, Zhengzhou, Henan 450001, People's Republic of China

ARTICLE INFO

Article history:

Received 19 August 2015
Received in revised form 1 March 2016
Accepted 4 March 2016
Available online 14 March 2016

Keywords:

Four-component Toda lattices
Trigonal curve
Quasi-periodic solutions

Abstract

Starting from a discrete 3×3 matrix spectral problem, the hierarchy of four-component Toda lattices is derived by using the stationary discrete zero-curvature equation. Resorting to the characteristic polynomial of the Lax matrix for the hierarchy, we introduce a trigonal curve \mathcal{K}_{m-2} of genus $m-2$ and present the related Baker-Akhiezer function and meromorphic function on it. Asymptotic expansions for the Baker-Akhiezer function and meromorphic function are given near three infinite points on the trigonal curve, from which explicit quasi-periodic solutions for the hierarchy of four-component Toda lattices are obtained in terms of the Riemann theta function.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Toda lattice

$$
\begin{equation*}
x_{n, t t}=\exp \left(x_{n-1}-x_{n}\right)-\exp \left(x_{n}-x_{n+1}\right), \quad(n, t) \in \mathbb{Z} \times \mathbb{R} \tag{1.1}
\end{equation*}
$$

for sequence $x_{n}=x(n, t)$, is a typical differential-difference system in soliton theory, which was originally derived in 1966 as a model for waves in lattices composed of particles interacting by nonlinear (exponential) forces between nearest neighbours [1]. In terms of the variable transformation $u_{n}=-\exp \left(x_{n}-x_{n+1}\right), v_{n}=x_{n, t}$, it can be rewritten in the following form

$$
\begin{align*}
& u_{n, t}=u_{n}\left(v_{n}-v_{n+1}\right) \tag{1.2}\\
& v_{n, t}=u_{n}-u_{n-1}
\end{align*}
$$

Since then, the study of the lattice soliton equations has received considerable attention [2-5]. The main reason is that a number of physical phenomena can be modelled by nonlinear lattice equations. Moreover, some generalizations of the Toda lattice equations have been discussed in a series of papers [6-11].

The main aim of the present paper is to study the hierarchy of four-component Toda lattices associated with a discrete 3×3 matrix spectral problem and the corresponding trigonal curve with three infinite points on the basis of the approaches in Refs. [12-16], from which explicit quasi-periodic solutions for the hierarchy of four-component Toda lattices are obtained in terms of the Riemann theta function. The first nontrivial member in the hierarchy is the four-component Toda lattice [11]

$$
\begin{align*}
& u_{n, t}=u_{n}\left(w_{n+1} r_{n+1}-w_{n} r_{n}-v_{n+1}+v_{n}\right) \\
& v_{n, t}=u_{n}-u_{n-1} \tag{1.3}\\
& w_{n, t}=-u_{n} w_{n+1} \\
& r_{n, t}=u_{n-1} r_{n-1}
\end{align*}
$$

[^0]which is exactly the Toda lattice system (1.2) as $w_{n}=r_{n}=0$. Before turning to the contents of each section, it is necessary to review the related literature on the subject. Quasi-periodic solutions for a lot of soliton equations associated with 2×2 matrix spectral problems have been obtained such as the KdV, Toda lattice, nonlinear Schrödinger equations and others [17-30]. However, when our sight turns to the 3×3 matrix spectral problems, the research becomes more difficult and complicated because of concerning the theory of trigonal curves rather than the hyperelliptic curves in the 2×2 cases [31-39]. In spite of this, a unified framework was proposed which yields all quasi-periodic solutions of the entire Boussinesq hierarchy associated with the third-order differential operator [12,13]. Recently, based on the characteristic polynomial of a Lax matrix associated with the 3×3 matrix spectral problem, a general method was developed to introduce the trigonal curve, from which the unified framework was successfully generalized to obtain the quasi-periodic solutions for the modified Boussinesq, the Kaup-Kupershmidt, the coupled mKdV hierarchies and others associated with the continuous 3×3 matrix spectral problems [14-16,40,41].

The present paper is arranged as follows. In the next section, with the aid of the discrete zero-curvature equation and three sets of Lenard recursion equations, we derive the hierarchy of four-component Toda lattices associated with the discrete 3×3 matrix spectral problem. In Section 3, we introduce the Baker-Akhiezer function and a trigonal curve of \mathcal{K}_{m-2} of degree $m-2$ with the help of the characteristic polynomial of Lax matrix for the hierarchy. The meromorphic function closely related to the Baker-Akhiezer function is defined on \mathcal{K}_{m-2}. Then the lattice hierarchy is decomposed into a system of Dubrovin-type ordinary differential equations. In Section 4, we derive the asymptotic expansions of the meromorphic function near infinite points with the help of the Riccati-type equation and obtain the divisor accordingly. Then the asymptotic properties of the Baker-Akhiezer function are also studied. The last section is devoted to present the quasi-periodic solutions of the meromorphic function ϕ, the Baker-Akhiezer function ψ_{1} and solutions for the hierarchy of four-component Toda lattices. Moreover, the continuous and discrete flows for the hierarchy of four-component Toda lattices are straightened out by virtue of a meromorphic differential.

2. The hierarchy of four-component Toda lattices

Throughout this paper we suppose the following hypothesis. Assume that $u, v, w, r \operatorname{satisfy} u(\cdot, t), v(\cdot, t), w(\cdot, t), r(\cdot, t) \in$ $\mathbb{C}^{\mathbb{Z}}, t \in \mathbb{R}, u(n, \cdot), v(n, \cdot), w(n, \cdot), r(n, \cdot) \in C^{1}(\mathbb{R}), n \in \mathbb{Z}$, where $\mathbb{C}^{\mathbb{Z}}$ denotes the set of all complex-valued sequences indexed by \mathbb{Z}.

Let us define the shift operators and difference operator by

$$
E f(n)=f(n+1), \quad E^{-1} f(n)=f(n-1), \quad \Delta f(n)=(E-1) f(n), \quad n \in \mathbb{Z}
$$

For the sake of convenience, we usually use the notations $f(n)=f, f(n+k)=E^{k} f, E^{ \pm} f=f^{ \pm}, n, k \in \mathbb{Z}$. Consider the discrete 3×3 matrix spectral problem [11]

$$
E \psi=U \psi, \quad \psi=\left(\begin{array}{l}
\psi_{1} \tag{2.1}\\
\psi_{2} \\
\psi_{3}
\end{array}\right), \quad U=\left(\begin{array}{ccc}
0 & u & 0 \\
1 & \lambda+v & r \\
0 & w & 1
\end{array}\right),
$$

where u, v, w, r are four potentials and λ is a constant spectral parameter. In order to derive the hierarchy of lattice equations associated with (2.1), we first solve the stationary discrete zero-curvature equation:

$$
\begin{equation*}
(E V) U-U V=0, \quad V=\left(V_{i j}\right)_{3 \times 3}, \tag{2.2}
\end{equation*}
$$

which is equivalent to

$$
\begin{align*}
& V_{12}^{+}-u V_{21}=0 \\
& u V_{11}^{+}+(\lambda+v) V_{12}^{+}+w V_{13}^{+}-u V_{22}=0 \\
& r V_{12}^{+}+V_{13}^{+}-u V_{23}=0 \\
& V_{22}^{+}-V_{11}-(\lambda+v) V_{21}-r V_{31}=0 \\
& u V_{21}^{+}+(\lambda+v) V_{22}^{+}+w V_{23}^{+}-V_{12}-(\lambda+v) V_{22}-r V_{32}=0 \tag{2.3}\\
& r V_{22}^{+}+V_{23}^{+}-V_{13}-(\lambda+v) V_{23}-r V_{33}=0 \\
& V_{32}^{+}-w V_{21}-V_{31}=0 \\
& u V_{31}^{+}+(\lambda+v) V_{32}^{+}+w V_{33}^{+}-w V_{22}-V_{32}=0 \\
& r V_{32}^{+}+V_{33}^{+}-w V_{23}-V_{33}=0
\end{align*}
$$

where each entry $V_{i j}=V_{i j}(a, b, c, d, e)$ is a Laurent expansion in λ :

$$
\begin{array}{llrl}
V_{11}=-(\lambda+v) b+c^{+}-r d, & V_{12} & =u^{-} b^{-}, & V_{13}=u^{-} a^{-}, \\
V_{21}=b, & V_{22}=c, & \tag{2.4}\\
V_{31}=d, & V_{32} & =w^{-} b^{-}+d^{-}, & \\
V_{33}=e, r b, \\
a=\sum_{j \geq 0} a_{j} \lambda^{-j}, & b=\sum_{j \geq 0} b_{j} \lambda^{-j}, & c=\sum_{j \geq 0} c_{j} \lambda^{-j}, & d=\sum_{j \geq 0} d_{j} \lambda^{-j}, \quad e=\sum_{j \geq 0} e_{j} \lambda^{-j} .
\end{array}
$$

https://daneshyari.com/en/article/1894538

Download Persian Version:
https://daneshyari.com/article/1894538

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: weijiaozzu@sohu.com (J. Wei), xggeng@zzu.edu.cn (X. Geng), xzeng@zzu.edu.cn (X. Zeng).

