
Journal of Geometry and Physics 106 (2016) 70–86

Contents lists available at ScienceDirect

Journal of Geometry and Physics

journal homepage: www.elsevier.com/locate/jgp

Dirac operators on quasi-Hamiltonian G-spaces
Yanli Song
University of Toronto, Canada

a r t i c l e i n f o

Article history:
Received 22 September 2015
Received in revised form 23 January 2016
Accepted 29 January 2016
Available online 12 February 2016

Keywords:
Dirac operators
Geometric quantization
Quasi-Hamiltonian G-space
Loop group

a b s t r a c t

We construct twisted spinor bundles as well as twisted pre-quantum bundles on quasi-
Hamiltonian G-spaces, using the spin representation of loop group and the Hilbert space
of Wess–Zumino–Witten model. We then define a Hilbert space together with a Dirac op-
erator acting on it. The main result of this paper is that we show the Dirac operator has a
well-defined index given by positive energy representation of the loop group. This gener-
alizes the geometric quantization of Hamiltonian G-spaces to quasi-Hamiltonian G-spaces.

Crown Copyright© 2016 Published by Elsevier B.V. All rights reserved.

1. Introduction

Let G be a compact, connected Lie group, and (M, ω) a compact symplectic manifold with a Hamiltonian G-action. By
choosing a G-invariant ω-compatible almost complex structure on M , we can define a G-equivariant Z2-graded spinor
bundle S±

M . If the Hamiltonian G-spaceM is pre-quantizable and has a G-equivariant pre-quantum line bundle L, we define a
Z2-graded Hilbert space by

H±
= L2(M, S±

M ⊗ L)

and a G-equivariant Spinc-Dirac operator

D±
: H±

→ H∓.

Attributed to Bott, the quantization of (M, ω) can be defined as the equivariant index

Q (M, ω) = Ind(D) = [ker(D+)] − [ker(D−)] ∈ R(G).

The goal of this paper is to generalize the quantization process to the quasi-Hamiltonian G-space introduced by
Alekseev–Malkin–Meinrenken [1]. The q-Hamiltonian G-space, arising from infinite-dimensional Hamiltonian loop group
space, differs in many respects from Hamiltonian G-space. In particular, the moment map takes values in the group G and
the 2-formω does not have to be closed or non-degenerate. Consequently, the two key ingredients in defining Q (M, ω): the
spinor bundle SM and pre-quantum line bundle Lmight not exist in general.

Given a q-Hamiltonian G-space (M, ω), we use the spin representation of loop group to construct twisted spinor bundles
Sspin on M , and the Hilbert space of Wess–Zumino–Witten model to construct twisted pre-quantum bundles Spre. Both of
themare bundles of Hilbert space and play the same roles as the spinor bundle and pre-quantum line bundle for Hamiltonian
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G-space. We analogously define a Hilbert space

H :=

L2(M, Sspin ⊗ Spre)

G
.

One key in the construction of Dirac operators on H is the algebraically defined cubic Dirac operator. It was introduced
by Kostant for finite-dimensional Lie group, and extensively studied for infinite-dimensional loop group by various people.
Our strategy is to construct a Dirac operator as a combination of algebraic cubic Dirac operators and geometric Spinc-Dirac
operators. To be more precise, we choose an open cover ofM using the symplectic cross-section theorem for q-Hamiltonian
G-space, so that every open subset U has the geometric structure:

U ∼= G×H V ,

where H is a compact subgroup of G and the slice V is a Hamiltonian H-space. Accordingly, the tangent bundle TU splits
equivariantly into ‘‘vertical direction’’ and ‘‘horizontal direction’’. We define a suitable Dirac operator on U so that it acts
as the Spinc-Dirac operator on the vertical part V and the cubic Dirac operator for loop group on the horizontal part G/H .
Using partition of unity, we obtain a global Dirac operator D on H by patching together Dirac operators on the open sets U .
The main result of this paper is that we show the Dirac operator D has a well-defined index given by positive energy
representations of loop group.

2. Loop group and positive energy representation

We first give a brief review on loop groups and their representations. We use [2] as our primary reference.

2.1. Loop group and central extension

Let G be a compact, simple and simply connected Lie group, and fix a ‘‘Sobolev level’’ s > 1. We define LG the loop group
as the Banach Lie group consisting of maps S1 → G of Sobolev class s +

1
2 with the group structure given by pointwise

multiplication. The Lie algebra Lg = Ω0(S1, g) is given by the space Lie algebra g-valued 0-forms of Sobolev class s +
1
2 and

Lg∗
= Ω1(S1, g) the space of g-valued 1-forms of Sobolev class s −

1
2 . Integration over S1 gives a natural non-degenerate

pairing between Lg with Lg∗.
Note that Lg∗ can be identified with the affine space of connections on the trivial principle G-bundle over S1. The loop

group LG acts on Lg∗ by gauge transformation

g · ξ = Adg(ξ) − dg · g−1, g ∈ LG, ξ ∈ Lg∗, (2.1)

where dg · g−1 is the pull-back of the right-invariant Maurer–Cartan form on G.
Let LG be the basic central extension of LG, defined in [2, Section 4.4]. The coadjoint action of LG onLg∗

= Lg∗
⊕ R

is given by the formula

g · (ξ , k) = (Adg(ξ) − k · g−1dg, k).

One can view the action (2.1) as the coadjoint action on the affine hyperplane Lg∗
× {1} ⊂ Lg∗

.
Fixing a maximal torus T , the choice of a set of positive roots R+ for G determines a positive Weyl chamber t∗

+
. It is

well-known that the orbits of coadjoint G-action on g∗ are parameterized by points in t∗
+
. The set of coadjoint LG-orbits can

be described as follows. Denote by α0 the highest root and

ρG =
1
2


α∈R+

α.

There is a unique ad-invariant inner product ⟨·, ·⟩g on g, rescaled so that the highest root of g has norm
√
2. The dual Coxeter

number of G is defined by

h∨
= 1 + ⟨ρG, α0⟩g,

and the fundamental Weyl alcove for G is the simplex

A = {ξ ∈ t+
⟨α0, ξ⟩g ≤ 1} ⊂ t ⊂ g.

Every coadjoint orbit of LG-action on Lg∗ contains a unique point in A.
For any ξ ∈ Lg∗, we define the holonomy map

Hol : Lg∗
→ G
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